求解动态规划的核心问题是穷举。
首先,动态规划的穷举有点特别,因为这类问题存在「重叠子问题」,如果暴力穷举的话效率会极其低下,所以需要「备忘录」或者「DP table」来优化穷举过程,避免不必要的计算。只有列出正确的「状态转移方程」,才能正确地穷举。
int fib(int n) {
if (n == 0 || n == 1) {
// base case
return n;
}
// 分别代表 dp[i - 1] 和 dp[i - 2]
int dp_i_1 = 1, dp_i_2 = 0;
for (int i = 2; i <= n; i++) {
// dp[i] = dp[i - 1] + dp[i - 2];
int dp_i = dp_i_1 + dp_i_2;
// 滚动更新
dp_i_2 = dp_i_1;
dp_i_1 = dp_i;
}
return dp_i_1;
}
322. 零钱兑换 - 力扣(LeetCode) (leetcode-cn.com)
int coinChange(int[] coins, int amount) {
// dp[i]表示金额为i所需要的最小硬币数量
int[] dp = new int[amount + 1];
// 数组大小为 amount + 1,初始值也为 amount + 1
Arrays.fill(dp, amount + 1);
// base case
dp[0] = 0;
// 外层 for 循环在遍历所有状态的所有取值
for (int i = 0; i < dp.length; i++) {
// 内层 for 循环在求所有选择的最小值
for (int coin : coins) {
// 子问题无解,跳过
if (i - coin < 0) {
continue;
}
dp[i] = Math.min(dp[i], 1 + dp[i - coin]);
}
}
return (dp[amount] == amount + 1) ? -1 : dp[amount];
}
注意「子序列」和「子串」这两个名词的区别,子串一定是连续的,而子序列不一定是连续的
我们先假设这个结论在 k < n
时成立,然后根据这个假设,想办法推导证明出 k = n
的时候此结论也成立
我们的定义是这样的:dp[i]
表示以 nums[i]
这个数结尾的最长递增子序列的长度。根据这个定义,我们就可以推出 base case:dp[i]
初始值为 1,因为以 nums[i]
结尾的最长递增子序列起码要包含它自己。
PS:为什么这样定义呢?这是解决子序列问题的一个套路
300. 最长递增子序列 - 力扣(LeetCode) (leetcode-cn.com)
int lengthOfLIS(int[] nums) {
// 定义:dp[i] 表示以 nums[i] 这个数结尾的最长递增子序列的长度
int[] dp = new int[nums.length];
// base case:dp 数组全都初始化为 1
Arrays.fill(dp, 1);
for (int i = 0; i < nums.length; i++) {
for (int j = 0; j < i; j++) {
if (nums[i] > nums[j])
dp[i] = Math.max(dp[i], dp[j] + 1);
}
}
int res = 0;
for (int i = 0; i < dp.length; i++) {
res = Math.max(res, dp[i]);
}
return res;
}
https://leetcode-cn.com/problems/russian-doll-envelopes/
这道题目其实是最长递增子序列的一个变种,因为每次合法的嵌套是大的套小的,相当于在二维平面中找一个最长递增的子序列,其长度就是最多能嵌套的信封个数。
思路:先对宽度 w
进行升序排序,如果遇到 w
相同的情况,则按照高度 h
降序排序;之后把所有的 h
作为一个数组,在这个数组上计算 LIS 的长度就是答案
class Solution {
public int maxEnvelopes(int[][] envelopes) {
Arrays.sort(envelopes, new Comparator<int[]>() {
@Override
public int compare(int[] o1, int[] o2) {
if (o1[0] != o2[0])
return o1[0] - o2[0];
else
return o2[1] - o1[1];
}
});
int len = envelopes.length;
int[] dp = new int[len];
int max = 1;
Arrays.fill(dp, 1);
for (int i = 1; i < len; i++) {
for (int j = 0; j < i; j++) {
if (envelopes[j][1] < envelopes[i][1])
dp[i] = Math.max(dp[i], dp[j] + 1);
}
max = max > dp[i] ? max : dp[i];
}
return max;
}
}
https://leetcode-cn.com/problems/maximum-subarray/
int maxSubArray(int[] nums) {
int n = nums.length;
if (n == 0) return 0;
// base case
int dp_0 = nums[0];
int dp_1 = 0, res = dp_0;
for (int i = 1; i < n; i++) {
// dp[i] = max(nums[i], nums[i] + dp[i-1])
dp_1 = Math.max(nums[i], nums[i] + dp_0);
dp_0 = dp_1;
// 顺便计算最大的结果
res = Math.max(res, dp_1);
}
return res;
}
https://leetcode-cn.com/problems/longest-common-subsequence/
不要看s1
和s2
两个字符串,而是要具体到每一个字符,思考每个字符该做什么。我们只看s1[i]
和s2[j]
,如果s1[i] == s2[j]
,说明这个字符一定在lcs
中,如果s1[i] != s2[j]
,s1[i]
和s2[j]
中至少有一个字符不在lcs
中
int longestCommonSubsequence(String s1, String s2) {
int m = s1.length(), n = s2.length();
int[][] dp = new int[m + 1][n + 1];
// 定义:s1[0..i-1] 和 s2[0..j-1] 的 lcs 长度为 dp[i][j]
// 目标:s1[0..m-1] 和 s2[0..n-1] 的 lcs 长度,即 dp[m][n]
// base case: dp[0][..] = dp[..][0] = 0
for (int i = 1; i <= m; i++) {
for (int j = 1; j <= n; j++) {
// 现在 i 和 j 从 1 开始,所以要减一
if (s1.charAt(i - 1) == s2.charAt(j - 1)) {
// s1[i-1] 和 s2[j-1] 必然在 lcs 中
dp[i][j] = 1 + dp[i - 1][j - 1];
} else {
// s1[i-1] 和 s2[j-1] 至少有一个不在 lcs 中
dp[i][j] = Math.max(dp[i][j - 1], dp[i - 1][j]);
}
}
}
return dp[m][n];
}
https://leetcode-cn.com/problems/delete-operation-for-two-strings/
题目让我们计算将两个字符串变得相同的最少删除次数,那我们可以思考一下,最后这两个字符串会被删成什么样子?
删除的结果不就是它俩的最长公共子序列嘛!
那么,要计算删除的次数,就可以通过最长公共子序列的长度推导出来
int minDistance(String s1, String s2) {
int m = s1.length(), n = s2.length();
// 复用前文计算 lcs 长度的函数
int lcs = longestCommonSubsequence(s1, s2);
return m - lcs + n - lcs;
}
https://leetcode-cn.com/problems/minimum-ascii-delete-sum-for-two-strings/
class Solution {
public int minimumDeleteSum(String s1, String s2) {
int m = s1.length();
int n = s2.length();
int[][] dp = new int[m+1][n+1];
int sum = 0;
for (int i = 0; i < m; i++) {
sum += s1.charAt(i);
}
for (int i = 0; i < n; i++) {
sum +=s2.charAt(i);
}
for (int i = 1; i <= m; i++) {
for (int j = 1; j <= n; j++) {
if (s1.charAt(i-1) == s2.charAt(j-1))
dp[i][j] = dp[i-1][j-1] + s1.charAt(i-1);
else {
dp[i][j] = Math.max(dp[i][j - 1], dp[i - 1][j]);
}
}
}
return sum - 2*dp[m][n];
}
}
int n = array.length;
int[] dp = new int[n];
for (int i = 1; i < n; i++) {
for (int j = 0; j < i; j++) {
dp[i] = 最值(dp[i], dp[j] + ...)
}
}
举个我们写过的例子 最长递增子序列,在这个思路中 dp 数组的定义是:
在子数组array[0..i]
中,以**array[i]
**结尾的目标子序列(最长递增子序列)的长度是dp[i]
。
为啥最长递增子序列需要这种思路呢?前文说得很清楚了,因为这样符合归纳法,可以找到状态转移的关系
int n = arr.length;
int[][] dp = new dp[n][n];
for (int i = 0; i < n; i++) {
for (int j = 1; j < n; j++) {
if (arr[i] == arr[j])
dp[i][j] = dp[i][j] + ...
else
dp[i][j] = 最值(...)
}
}
这种思路运用相对更多一些,尤其是涉及两个字符串/数组的子序列。本思路中 dp 数组含义又分为「只涉及一个字符串」和「涉及两个字符串」两种情况。
在子数组arr1[0..i]
和子数组arr2[0..j]
中,我们要求的子序列(最长公共子序列)长度为dp[i][j]
。
参考:编辑距离 和 最长公共子序列。
在子数组array[i..j]
中,我们要求的子序列(最长回文子序列)的长度为dp[i][j]
。
https://leetcode-cn.com/problems/longest-palindromic-subsequence/
int longestPalindromeSubseq(string s) {
int n = s.size();
// dp 数组全部初始化为 0
vector<vector<int>> dp(n, vector<int>(n, 0));
// base case
for (int i = 0; i < n; i++)
dp[i][i] = 1;
// 反着遍历保证正确的状态转移
for (int i = n - 1; i >= 0; i--) {
for (int j = i + 1; j < n; j++) {
// 状态转移方程
if (s[i] == s[j])
dp[i][j] = dp[i + 1][j - 1] + 2;
else
dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);
}
}
// 整个 s 的最长回文子串长度
return dp[0][n - 1];
}
dp[i][w]
的定义如下:对于前 i
个物品,当前背包的容量为 w
,这种情况下可以装的最大价值是 dp[i][w]
。
比如说,如果 dp[3][5] = 6
,其含义为:对于给定的一系列物品中,若只对前 3 个物品进行选择,当背包容量为 5 时,最多可以装下的价值为 6。
dp[i][w]
表示:对于前 i
个物品,当前背包的容量为 w
时,这种情况下可以装下的最大价值是 dp[i][w]
。
如果你没有把这第 i
个物品装入背包,那么很显然,最大价值 dp[i][w]
应该等于 dp[i-1][w]
,继承之前的结果。
如果你把这第 i
个物品装入了背包,那么 dp[i][w]
应该等于 dp[i-1][w - wt[i-1]] + val[i-1]
。
int knapsack(int W, int N, int[] wt, int[] val) {
// base case 已初始化
int[][] dp = new int[N + 1][W + 1];
for (int i = 1; i <= N; i++) {
for (int w = 1; w <= W; w++) {
if (w - wt[i - 1] < 0) {
// 这种情况下只能选择不装入背包
dp[i][w] = dp[i - 1][w];
} else {
// 装入或者不装入背包,择优
dp[i][w] = Math.max(
dp[i - 1][w - wt[i-1]] + val[i-1],
dp[i - 1][w]
);
}
}
}
return dp[N][W];
}
https://leetcode-cn.com/problems/partition-equal-subset-sum/
首先回忆一下背包问题大致的描述是什么:
给你一个可装载重量为 W
的背包和 N
个物品,每个物品有重量和价值两个属性。其中第 i
个物品的重量为 wt[i]
,价值为 val[i]
,现在让你用这个背包装物品,最多能装的价值是多少?
那么对于这个问题,我们可以先对集合求和,得出 sum
,把问题转化为背包问题:
给一个可装载重量为 sum / 2
的背包和 N
个物品,每个物品的重量为 nums[i]
。现在让你装物品,是否存在一种装法,能够恰好将背包装满?
你看,这就是背包问题的模型,甚至比我们之前的经典背包问题还要简单一些,下面我们就直接转换成背包问题,开始套前文讲过的背包问题框架即可。
boolean canPartition(int[] nums) {
int sum = 0;
for (int num : nums) sum += num;
// 和为奇数时,不可能划分成两个和相等的集合
if (sum % 2 != 0) return false;
int n = nums.length;
sum = sum / 2;
boolean[][] dp = new boolean[n + 1][sum + 1];
// base case
for (int i = 0; i <= n; i++)
dp[i][0] = true;
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= sum; j++) {
if (j - nums[i - 1] < 0) {
// 背包容量不足,不能装入第 i 个物品
dp[i][j] = dp[i - 1][j];
} else {
// 装入或不装入背包
dp[i][j] = dp[i - 1][j] || dp[i - 1][j - nums[i - 1]];
}
}
}
return dp[n][sum];
}
boolean canPartition(int[] nums) {
int sum = 0;
for (int num : nums) sum += num;
// 和为奇数时,不可能划分成两个和相等的集合
if (sum % 2 != 0) return false;
int n = nums.length;
sum = sum / 2;
boolean[] dp = new boolean[sum + 1];
// base case
dp[0] = true;
for (int i = 0; i < n; i++) {
for (int j = sum; j >= 0; j--) {
if (j - nums[i] >= 0) {
dp[j] = dp[j] || dp[j - nums[i]];
}
}
}
return dp[sum];
}
唯一需要注意的是 j
应该从后往前反向遍历,因为每个物品(或者说数字)只能用一次,以免之前的结果影响其他的结果
https://leetcode-cn.com/problems/coin-change-2/
有一个背包,最大容量为 amount
,有一系列物品 coins
,每个物品的重量为 coins[i]
,每个物品的数量无限。请问有多少种方法,能够把背包恰好装满?
这个问题和我们前面讲过的两个背包问题,有一个最大的区别就是,每个物品的数量是无限的,这也就是传说中的「完全背包问题」,没啥高大上的,无非就是状态转移方程有一点变化而已。
dp[i][j]
的定义如下:
若只使用前 i
个物品(可以重复使用),当背包容量为 j
时,有 dp[i][j]
种方法可以装满背包。
换句话说,翻译回我们题目的意思就是:
若只使用 coins
中的前 i
个硬币的面值,若想凑出金额 j
,有 dp[i][j]
种凑法。
经过以上的定义,可以得到:
base case 为 dp[0][..] = 0, dp[..][0] = 1
。因为如果不使用任何硬币面值,就无法凑出任何金额;如果凑出的目标金额为 0,那么“无为而治”就是唯一的一种凑法。
我们最终想得到的答案就是 dp[N][amount]
,其中 N
为 coins
数组的大小。
如果你不把这第 i
个物品装入背包,也就是说你不使用 coins[i]
这个面值的硬币,那么凑出面额 j
的方法数 dp[i][j]
应该等于 dp[i-1][j]
,继承之前的结果。
如果你把这第 i
个物品装入了背包,也就是说你使用 coins[i]
这个面值的硬币,那么 dp[i][j]
应该等于 dp[i][j-coins[i-1]]
。
首先由于 i
是从 1 开始的,所以 coins
的索引是 i-1
时表示第 i
个硬币的面值。
dp[i][j-coins[i-1]]
也不难理解,如果你决定使用这个面值的硬币,那么就应该关注如何凑出金额 j - coins[i-1]
。
比如说,你想用面值为 2 的硬币凑出金额 5,那么如果你知道了凑出金额 3 的方法,再加上一枚面额为 2 的硬币,不就可以凑出 5 了嘛。
综上就是两种选择,而我们想求的 dp[i][j]
是「共有多少种凑法」,所以 dp[i][j]
的值应该是以上两种选择的结果之和:
int change(int amount, int[] coins) {
int n = coins.length;
int[][] dp = int[n + 1][amount + 1];
// base case
for (int i = 0; i <= n; i++)
dp[i][0] = 1;
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= amount; j++)
if (j - coins[i-1] >= 0)
dp[i][j] = dp[i - 1][j]
+ dp[i][j - coins[i-1]];
else
dp[i][j] = dp[i - 1][j];
}
return dp[n][amount];
}
int change(int amount, int[] coins) {
int n = coins.length;
int[] dp = new int[amount + 1];
dp[0] = 1; // base case
for (int i = 0; i < n; i++)
for (int j = 1; j <= amount; j++)
if (j - coins[i] >= 0)
dp[j] = dp[j] + dp[j-coins[i]];
return dp[amount];
}
int change(int amount, int[] coins) {
int n = coins.length;
int[] dp = new int[amount + 1];
dp[0] = 1; // base case
for (int i = 0; i < n; i++)
for (int j = 1; j <= amount; j++)
if (j - coins[i] >= 0)
dp[j] = dp[j] + dp[j-coins[i]];
return dp[amount];
}