pandas随机打乱数据

调用接口

df.sample(n,frac,replace,weights,random_state,axis)

例如:

df=pd.read_csv('xxx.csv')

df.sample(frac=1.0,random_state)
  • frac=1.0 表示保留全部数据
  • random_state 随机种子,保证每次打乱的顺序相同

源码中的例子:

    def sample(self, n=None, frac=None, replace=False, weights=None,
               random_state=None, axis=None):
        """
        Return a random sample of items from an axis of object.

        You can use `random_state` for reproducibility.

        Parameters
        ----------
        n : int, optional
            Number of items from axis to return. Cannot be used with `frac`.
            Default = 1 if `frac` = None.
        frac : float, optional
            Fraction of axis items to return. Cannot be used with `n`.
        replace : bool, default False
            Sample with or without replacement.
        weights : str or ndarray-like, optional
            Default 'None' results in equal probability weighting.
            If passed a Series, will align with target object on index. Index
            values in weights not found in sampled object will be ignored and
            index values in sampled object not in weights will be assigned
            weights of zero.
            If called on a DataFrame, will accept the name of a column
            when axis = 0.
            Unless weights are a Series, weights must be same length as axis
            being sampled.
            If weights do not sum to 1, they will be normalized to sum to 1.
            Missing values in the weights column will be treated as zero.
            Infinite values not allowed.
        random_state : int or numpy.random.RandomState, optional
            Seed for the random number generator (if int), or numpy RandomState
            object.
        axis : int or string, optional
            Axis to sample. Accepts axis number or name. Default is stat axis
            for given data type (0 for Series and DataFrames, 1 for Panels).

        Returns
        -------
        Series or DataFrame
            A new object of same type as caller containing `n` items randomly
            sampled from the caller object.

        See Also
        --------
        numpy.random.choice: Generates a random sample from a given 1-D numpy
            array.

        Examples
        --------
        >>> df = pd.DataFrame({'num_legs': [2, 4, 8, 0],
        ...                    'num_wings': [2, 0, 0, 0],
        ...                    'num_specimen_seen': [10, 2, 1, 8]},
        ...                   index=['falcon', 'dog', 'spider', 'fish'])
        >>> df
                num_legs  num_wings  num_specimen_seen
        falcon         2          2                 10
        dog            4          0                  2
        spider         8          0                  1
        fish           0          0                  8

        Extract 3 random elements from the ``Series`` ``df['num_legs']``:
        Note that we use `random_state` to ensure the reproducibility of
        the examples.

        >>> df['num_legs'].sample(n=3, random_state=1)
        fish      0
        spider    8
        falcon    2
        Name: num_legs, dtype: int64

        A random 50% sample of the ``DataFrame`` with replacement:

        >>> df.sample(frac=0.5, replace=True, random_state=1)
              num_legs  num_wings  num_specimen_seen
        dog          4          0                  2
        fish         0          0                  8

        Using a DataFrame column as weights. Rows with larger value in the
        `num_specimen_seen` column are more likely to be sampled.

        >>> df.sample(n=2, weights='num_specimen_seen', random_state=1)
                num_legs  num_wings  num_specimen_seen
        falcon         2          2                 10
        fish           0          0                  8

注意:

random.shuffle()没有返回值,通常和迭代器结合使用。

你可能感兴趣的:(pandas)