Transformer实现以及Pytorch源码解读(五)-多头注意力机制MultiheadAttention

介绍

接前序的四篇Transformer解读博客,补充说明第四次博客中MltiheadAttention类的数据源码处理。
Transformer实现以及Pytorch源码解读(四)-Encoder层

涉及到的源文件

\site-packages\torch\nn\modules\activation.py
\site-packages\torch\nn\functional.py

涉及到的函数

用到\site-packages\torch\nn\modules\activation.py的类:
MultiheadAttention类:
\site-packages\torch\nn\functional.py:
_in_projection_packed函数
_scaled_dot_product_attention函数
multi_head_attention_forward函数

数据流动过程

第一步:
根据以下的参数将MultiheadAttention类初始化。主要接受的参数,词向量维度,和头的数量

    def __init__(self, embed_dim, num_heads, dropout=0., bias=True, add_bias_kv=False, add_zero_attn=False,
                 kdim=None, vdim=None, batch_first=False, device=None, dtype=None) -> None:
        factory_kwargs = {'device': device, 'dtype': dtype}
        super(MultiheadAttention, self).__init__()
        self.embed_dim = embed_dim
        self.kdim = kdim if kdim is not None else embed_dim
        self.vdim = vdim if vdim is not None else embed_dim
        #是一个binary变量,表示k,q,v的维度是否一样
        self._qkv_same_embed_dim = self.kdim == embed_dim and self.vdim == embed_dim
        # print("=========================_qkv_same_embed_dim=:",self._qkv_same_embed_dim)

        self.num_heads = num_heads
        self.dropout = dropout
        self.batch_first = batch_first
        self.head_dim = embed_dim // num_heads
        assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads"

        if self._qkv_same_embed_dim is False:
            self.q_proj_weight = Parameter(torch.empty((embed_dim, embed_dim), **factory_kwargs))
            self.k_proj_weight = Parameter(torch.empty((embed_dim, self.kdim), **factory_kwargs))
            self.v_proj_weight = Parameter(torch.empty((embed_dim, self.vdim), **factory_kwargs))
            self.register_parameter('in_proj_weight', None)
        else:
            self.in_proj_weight = Parameter(torch.empty((3 * embed_dim, embed_dim), **factory_kwargs))
            # print(self.in_proj_weight.shape)
            self.register_parameter('q_proj_weight', None)
            self.register_parameter('k_proj_weight', None)
            self.register_parameter('v_proj_weight', None)

        if bias:
            self.in_proj_bias = Parameter(torch.empty(3 * embed_dim, **factory_kwargs))
        else:
            self.register_parameter('in_proj_bias', None)
        self.out_proj = NonDynamicallyQuantizableLinear(embed_dim, embed_dim, bias=bias, **factory_kwargs)

        if add_bias_kv:
            self.bias_k = Parameter(torch.empty((1, 1, embed_dim), **factory_kwargs))
            self.bias_v = Parameter(torch.empty((1, 1, embed_dim), **factory_kwargs))
        else:
            self.bias_k = self.bias_v = None

        self.add_zero_attn = add_zero_attn

        self._reset_parameters()

其中in_proj_weight和in_proj_bias为初始化的权重和偏置项。通过参数_qkv_same_embed_dim判断是否为自注意力,如果是自注意力的话将q进行扩充3倍处理。
第二步
初始化权重和偏置项:
在_reset_parameters()函数中进行初始化,给权重和偏置项中的每个位置随机填充-a到a之间的一个数字,a的计算用到的以下的公式:
a = gain × 6 fan_in + fan_out a = \text{gain} \times \sqrt{\frac{6}{\text{fan\_in} + \text{fan\_out}}} a=gain×fan_in+fan_out6
以上公式的实现如下

def xavier_uniform_(tensor: Tensor, gain: float = 1.) -> Tensor:
    r"""Fills the input `Tensor` with values according to the method
    described in `Understanding the difficulty of training deep feedforward
    neural networks` - Glorot, X. & Bengio, Y. (2010), using a uniform
    distribution. The resulting tensor will have values sampled from
    :math:`\mathcal{U}(-a, a)` where

    .. math::
        a = \text{gain} \times \sqrt{\frac{6}{\text{fan\_in} + \text{fan\_out}}}

    Also known as Glorot initialization.

    Args:
        tensor: an n-dimensional `torch.Tensor`
        gain: an optional scaling factor

    Examples:
        >>> w = torch.empty(3, 5)
        >>> nn.init.xavier_uniform_(w, gain=nn.init.calculate_gain('relu'))
    """
    fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor)
    std = gain * math.sqrt(2.0 / float(fan_in + fan_out))
    a = math.sqrt(3.0) * std  # Calculate uniform bounds from standard deviation

    return _no_grad_uniform_(tensor, -a, a)

fan_in 和fan_out的计算是根据输入tensor的维度确定的:

def _calculate_fan_in_and_fan_out(tensor):
 dimensions = tensor.dim()
 if dimensions < 2:
     raise ValueError("Fan in and fan out can not be computed for tensor with fewer than 2 dimensions")

 num_input_fmaps = tensor.size(1)
 num_output_fmaps = tensor.size(0)
 receptive_field_size = 1
 if tensor.dim() > 2:
     # math.prod is not always available, accumulate the product manually
     # we could use functools.reduce but that is not supported by TorchScript
     for s in tensor.shape[2:]:
         receptive_field_size *= s
 fan_in = num_input_fmaps * receptive_field_size
 fan_out = num_output_fmaps * receptive_field_size

 return fan_in, fan_out

第三步
在MultiheadAttention类的forward中进行每个batch的计算。
简化来看进行的是如下的操作:
(1)三个参数分别经过一个全连接层

 if not use_separate_proj_weight:
  #三个参数与in_porj_weight相乘。
  q, k, v = _in_projection_packed(query, key, value, in_proj_weight, in_proj_bias)
def _in_projection_packed(
    q: Tensor,
    k: Tensor,
    v: Tensor,
    w: Tensor,
    b: Optional[Tensor] = None,
) -> List[Tensor]:
    r"""
    Performs the in-projection step of the attention operation, using packed weights.
    Output is a triple containing projection tensors for query, key and value.

    Args:
        q, k, v: query, key and value tensors to be projected. For self-attention,
            these are typically the same tensor; for encoder-decoder attention,
            k and v are typically the same tensor. (We take advantage of these
            identities for performance if they are present.) Regardless, q, k and v
            must share a common embedding dimension; otherwise their shapes may vary.
        w: projection weights for q, k and v, packed into a single tensor. Weights
            are packed along dimension 0, in q, k, v order.
        b: optional projection biases for q, k and v, packed into a single tensor
            in q, k, v order.

    Shape:
        Inputs:
        - q: :math:`(..., E)` where E is the embedding dimension
        - k: :math:`(..., E)` where E is the embedding dimension
        - v: :math:`(..., E)` where E is the embedding dimension
        - w: :math:`(E * 3, E)` where E is the embedding dimension
        - b: :math:`E * 3` where E is the embedding dimension

        Output:
        - in output list :math:`[q', k', v']`, each output tensor will have the
            same shape as the corresponding input tensor.
    """
    E = q.size(-1)
    if k is v:
        if q is k:
            # print("=========q:",q.shape)
            # print("=========w:",w.shape)
            return linear(q, w, b).chunk(3, dim=-1)
        else:
            # encoder-decoder attention
            w_q, w_kv = w.split([E, E * 2])
            if b is None:
                b_q = b_kv = None
            else:
                b_q, b_kv = b.split([E, E * 2])
            return (linear(q, w_q, b_q),) + linear(k, w_kv, b_kv).chunk(2, dim=-1)
    else:
        w_q, w_k, w_v = w.chunk(3)
        if b is None:
            b_q = b_k = b_v = None
        else:
            b_q, b_k, b_v = b.chunk(3)
        return linear(q, w_q, b_q), linear(k, w_k, b_k), linear(v, w_v, b_v)

(2)三参数在bachsize维度根据头数扩充
多头就是在这里进行工作的

q = q.contiguous().view(tgt_len, bsz * num_heads, head_dim).transpose(0, 1)
k = k.contiguous().view(k.shape[0], bsz * num_heads, head_dim).transpose(0, 1)
v = v.contiguous().view(v.shape[0], bsz * num_heads, head_dim).transpose(0, 1)

(3)三参数顺序列相乘
获得注意力向量和最终结果。注意这里torch.bmm的使用。


def _scaled_dot_product_attention(
  q: Tensor,
  k: Tensor,
  v: Tensor,
  attn_mask: Optional[Tensor] = None,
  dropout_p: float = 0.0,
) -> Tuple[Tensor, Tensor]:
  r"""
  Computes scaled dot product attention on query, key and value tensors, using
  an optional attention mask if passed, and applying dropout if a probability
  greater than 0.0 is specified.
  Returns a tensor pair containing attended values and attention weights.

  Args:
      q, k, v: query, key and value tensors. See Shape section for shape details.
      attn_mask: optional tensor containing mask values to be added to calculated
          attention. May be 2D or 3D; see Shape section for details.
      dropout_p: dropout probability. If greater than 0.0, dropout is applied.

  Shape:
      - q: :math:`(B, Nt, E)` where B is batch size, Nt is the target sequence length,
          and E is embedding dimension.
      - key: :math:`(B, Ns, E)` where B is batch size, Ns is the source sequence length,
          and E is embedding dimension.
      - value: :math:`(B, Ns, E)` where B is batch size, Ns is the source sequence length,
          and E is embedding dimension.
      - attn_mask: either a 3D tensor of shape :math:`(B, Nt, Ns)` or a 2D tensor of
          shape :math:`(Nt, Ns)`.

      - Output: attention values have shape :math:`(B, Nt, E)`; attention weights
          have shape :math:`(B, Nt, Ns)`
  """
  B, Nt, E = q.shape
  q = q / math.sqrt(E)
  # (B, Nt, E) x (B, E, Ns) -> (B, Nt, Ns)
  attn = torch.bmm(q, k.transpose(-2, -1))
  if attn_mask is not None:
      attn += attn_mask
  attn = softmax(attn, dim=-1)
  if dropout_p > 0.0:
      attn = dropout(attn, p=dropout_p)
  # (B, Nt, Ns) x (B, Ns, E) -> (B, Nt, E)
  output = torch.bmm(attn, v)
  return output, attn

总结

源码总对于num_head的处理有代码冗余的情况。

你可能感兴趣的:(Pytorch,算法,python,transformer,pytorch,深度学习)