- 构建智能企业知识管理平台:动态知识图谱与语义检索系统
AI天才研究院
AgenticAI实战AI大模型企业级应用开发实战AI人工智能与大数据知识图谱人工智能ai
构建智能企业知识管理平台:动态知识图谱与语义检索系统关键词:知识管理平台、动态知识图谱、语义检索、知识图谱构建、语义检索算法摘要:本文详细探讨了构建智能企业知识管理平台的核心技术,重点介绍了动态知识图谱和语义检索系统的原理与实现。通过分析知识图谱的构建方法和语义检索算法,结合实际案例,展示了如何利用这些技术提升企业的知识管理水平。文章内容包括背景介绍、核心概念、算法原理、系统架构设计、项目实战以及
- 巅峰对决,超三十万奖金等你挑战!第十届信也科技杯全球AI算法大赛火热开赛!
中杯可乐多加冰
前沿资讯分享科技人工智能算法计算机视觉机器学习深度学习
信也科技今年跟IJCAI和CIKM这两大全球顶级AI会议合作,这场比赛被全球人工智能顶会CIKM收录为官方赛事单元,获奖选手有机会全球人工智能顶会创造更大的影响力。一、赛事概况随着深度伪造技术的高度发展,人工智能产业走深向实,生成合成技术开始呈现工具化和普及化趋势。在生成合成内容质量显著提升的当下,基于换脸攻击的身份冒用和欺诈事件在全球范围内激增,严重威胁个人隐私和公共数据安全。第十届信也科技杯全
- OPENAI中Assistants API的实现原理及示例代码python实现
dzend
aigcpythonai
OPENAI中AssistantsAPI的实现原理及示例代码前言OPENAI是一家人工智能公司,致力于研究和开发人工智能技术。其中,AssistantsAPI是OPENAI推出的一项人工智能服务,可以帮助开发者快速构建智能助手。本文将介绍AssistantsAPI的实现原理,并提供使用Python实现的示例代码。AssistantsAPI实现原理AssistantsAPI的实现原理主要包括以下几个
- 从维基百科到知识图谱:用 DSPy、OpenAI 和 TiDB 构建 GraphRAG 的奇妙旅程
步子哥
AGI通用人工智能知识图谱tidb人工智能
在信息爆炸的时代,如何快速从海量数据中提取有用信息,成为了技术发展的重要方向。传统的RAG(Retrieval-AugmentedGeneration)方法虽然在信息检索领域表现出色,但随着需求复杂度的提升,GraphRAG(基于知识图谱的RAG)逐渐成为更优的解决方案。本文将带您一步步了解如何利用DSPy、OpenAI和TiDBVectorDatabase,从维基百科数据构建一个GraphRAG
- 使用大模型预测胃穿孔的全流程系统技术方案大纲
目录一、项目概述二、项目背景三、建设目标四、建设内容(一)建设架构(二)核心功能(三)核心技术(四)预期成效(五)方案总结五、系统架构方案流程图六、实验验证证据七、健康教育与指导一、项目概述本项目旨在构建一套基于大模型的胃穿孔预测及全流程管理系统,通过整合术前、术中、术后各环节数据,利用先进的人工智能技术,实现对胃穿孔疾病的精准预测、手术方案优化、并发症风险预警以及术后护理指导等功能,为医疗决策提
- 表观遗传风暴:深圳AI-BioFab终极防御战全纪实
前言前些天发现了一个巨牛的人工智能免费学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站⚡《表观遗传风暴:深圳AI-BioFab终极防御战全纪实》副标题:抗癌疫苗灌装倒计时90秒惊现组蛋白叛乱,中国启动虫洞计算化解文明级生物危机2025年7月2日14:26光明科学城急电当第184支抗癌疫苗注入冷链罐的瞬间,B3层突爆刺眼蓝光!培养舱内数千细胞染色体疯狂解旋,量子钟在14:26:03
- 医疗影像诊断新范式:多模态AI在癌症早筛中的落地难题
HeartException
人工智能
前言前些天发现了一个巨牛的人工智能免费学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站医疗影像诊断新范式:多模态AI在癌症早筛中的落地难题——2025年临床转化瓶颈突破与多中心验证报告残酷现实:FDA2025Q1报告显示,87%的AI影像工具因临床转化失败止步于III期试验破局曙光:斯坦福-梅奥联合研究证实,多模态融合使肺结节良恶性判别AUC提升至0.98(单模态上限0.91)一
- 合成生物学奇点:AI驱动CRISPR超进化工厂2025投产纪实
前言前些天发现了一个巨牛的人工智能免费学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站《合成生物学奇点:AI驱动CRISPR超进化工厂2025投产纪实》副标题:全球首座AI-BioFab落地深圳,蛋白质设计周期从3年压缩至11天,生物制造成本暴跌90%一、生物制造范式的历史性颠覆▶︎传统生物工程的三大世纪困局graphTDA[缓慢的试错循环]-->B[单基因改造耗时≥6个月]C[
- Transformer已死?2025年十大替代架构实战评测
前言前些天发现了一个巨牛的人工智能免费学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站封面图建议:十大架构3D渲染图环绕碎裂的Transformer图标,背景为动态性能雷达图副标题:实测推理速度/显存占用/长文本能力,附迁移成本决策树一、争议源起:Transformer的时代性局限(2025版)graphLRA[Transformer痛点]-->B[显存黑洞:千亿模型推理需1.6
- 生物启发AI新突破:神经形态芯片+脉冲神经网络落地指南
HeartException
人工智能
前言前些天发现了一个巨牛的人工智能免费学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站《生物启发AI新突破:神经形态芯片+脉冲神经网络落地指南》副标题:基于2025年英特尔Loihi3芯片的工业级部署实战(附能耗对比&代码库)封面建议:脉冲神经网络动态脉冲传导图覆盖在神经形态芯片显微结构上,标注「能效比:传统GPU的1/800」一、2025生物启发AI的临界点突破生物神经特性事件
- 《从Backprop到Diffusion:深度学习的算法进化树全景图》
HeartException
学习人工智能
前言前些天发现了一个巨牛的人工智能免费学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站《从Backprop到Diffusion:深度学习的算法进化树全景图》**展开系统性解析。全文基于算法原理-技术突破-产业重塑的三层逻辑链,融合2025年最新研究成果与产业数据,呈现深度学习四十年的底层技术迁徙路径从Backprop到Diffusion:深度学习的算法进化树全景图副标题:一部算法
- 语言模型之谜:提示内容与格式的交响诗
步子哥
AGI通用人工智能语言模型人工智能自然语言处理
当代人工智能领域中,语言模型(LLM)正以前所未有的规模和深度渗透到各行各业。从代码生成到数学推理,从问答系统到多项选择题,每一次技术的跃进都离不开一个看似简单却充满玄机的关键环节——提示(prompt)的设计。而在这场提示优化的探索中,内容与格式的双重奏正逐渐揭开其神秘面纱,谱写出一曲宏大的交响诗。本文将带您走进“内容格式集成提示优化(CFPO)”的奇幻世界,揭示如何透过细腻的内容雕琢和精妙的格
- 多模态大模型:技术原理与实战 看清GPT的进化史和创新点
AI天才研究院
AgenticAI实战计算AI人工智能与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
多模态大模型:技术原理与实战看清GPT的进化史和创新点1.背景介绍1.1人工智能的发展历程1.1.1早期人工智能1.1.2机器学习时代1.1.3深度学习的崛起1.2自然语言处理的演进1.2.1基于规则的方法1.2.2统计机器学习方法1.2.3深度学习方法1.3大语言模型的出现1.3.1Transformer架构的提出1.3.2GPT系列模型的发展1.3.3多模态大模型的兴起2.核心概念与联系2.1
- 《卷积神经网络到Vision Transformer:计算机视觉的十年架构革命》
HeartException
人工智能学习
前言前些天发现了一个巨牛的人工智能免费学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站题目《卷积神经网络到VisionTransformer:计算机视觉的十年架构革命》展开深度解析,全文采用技术演进史+架构对比+产业影响的三段式结构,附关键数据与趋势预测:卷积神经网络到VisionTransformer:计算机视觉的十年架构革命副标题:从局部感知到全局建模,一场改变AI视觉基石的
- Alpha系统联结大数据、GPT两大功能,助力律所管理降本增效
资讯分享周
大数据gpt
如何通过AI工具实现法律服务的提质增效,是每一位法律人都积极关注和学习的课题。但从AI技术火爆一下,法律人一直缺乏系统、实用的学习资料,来掌握在法律场景下AI的使用技巧。今年5月,iCourt携手贵阳律协大数据与人工智能专业委员会,联合举办了《人工智能助力律师行业高质量发展巡回讲座》,超过100家律所的律师参与活动。讲座上,iCourtAIGC研究员、AlphaGPT产品研发负责人兰洋,为贵州律协
- Xtuner:大模型微调快速上手
潘达斯奈基~
AIGCAIGC
一、XTuner是什么?简单来说,XTuner是一个轻量级、易于使用的、为大语言模型(LLM)设计的微调工具库。它由上海人工智能实验室(OpenMMLab)开发,是其强大AI工具生态(MMCV,MMEngine等)的一部分。它的核心设计理念是“用一个配置文件搞定一切”,让开发者和研究人员可以极大地简化微调流程。二、为什么选择XTuner?(核心优势)轻量且用户友好:命令行驱动:你不需要编写复杂的训
- AI时代的人类增强:道德考虑与身体增强的未来发展机遇分析机遇挑战
AI天才研究院
AI人工智能与大数据AI大模型企业级应用开发实战AgenticAI实战大厂Offer收割机面试题简历程序员读书硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLMJavaPython架构设计Agent程序员实现财富自由
AI时代的人类增强:道德考虑与身体增强的未来发展机遇分析机遇挑战关键词:人工智能、身体增强、道德考虑、未来发展、机遇挑战摘要:本文将探讨AI时代人类增强的各个方面,包括道德考虑和身体增强技术的未来发展机遇与挑战。通过详细分析AI技术基础、身体增强技术、道德哲学及社会影响,本文旨在为读者提供对这一前沿领域的深入理解和前瞻性思考。目录大纲AI时代的人类增强:道德考虑与身体增强的未来发展机遇分析机遇挑战
- 目标检测:从基础原理到前沿技术全面解析
随机森林404
计算机视觉目标检测人工智能计算机视觉
引言在计算机视觉领域,目标检测是一项核心且极具挑战性的任务,它不仅要识别图像中有什么物体,还要确定这些物体在图像中的具体位置。随着人工智能技术的快速发展,目标检测已成为智能监控、自动驾驶、医疗影像分析等众多应用的基础技术。本文将全面介绍目标检测的基础概念、发展历程、关键技术、实践应用以及未来趋势,为读者提供系统性的知识框架。第一章目标检测概述1.1目标检测的定义与重要性目标检测(ObjectDet
- 喜讯 | Navicat 蝉联 2025 年 DBTA 100 强名单
Navicat中国
Navicat17焕新上市navicat数据库
Navicat在“DBTA1002025-数据领域最重要的公司”榜单中获得表彰。该奖项旨在表彰在数据管理与分析领域的领先创新者。数据库趋势与应用集团出版人TomHogan表示:“企业正寻求扩大人工智能的应用范围,采用新的技术与应用,增加数据分析/商业智能的使用,并对现有应用进行现代化改造”,“每年,《数据库趋势与应用》杂志都会推出DBTA100榜单,旨在表彰具有创新精神、能够为客户带来新产品新体验
- Midjourney:AI人工智能图像生成的新方向
AI智能探索者
人工智能midjourney计算机视觉ai
Midjourney:AI人工智能图像生成的新方向关键词:Midjourney、AI图像生成、扩散模型、提示词工程、多模态学习、生成式AI、创意工具摘要:本文将带您走进AI图像生成的前沿领域,以Midjourney为核心,从技术原理到实际应用,用通俗易懂的语言解析其背后的“魔法”。我们将通过生活案例、技术拆解和实战演示,揭示Midjourney如何通过扩散模型、提示词工程和多模态学习,重新定义“用
- 剖析AI人工智能领域Whisper的性能指标
AI大模型应用实战
人工智能whisperxcodeai
剖析AI人工智能领域Whisper的性能指标关键词:Whisper、语音识别、性能指标、ASR、AI模型评估、基准测试、语音转文本摘要:本文深入剖析OpenAI开发的Whisper语音识别系统的性能指标。我们将从技术原理、架构设计、性能基准测试等多个维度,全面分析Whisper在不同场景下的表现。文章将详细讲解Whisper的评估方法、关键性能指标解读、实际应用中的性能表现,以及与其他主流语音识别
- 探索AI人工智能领域多智能体系统的技术原理
AI大模型应用之禅
人工智能网络ai
探索AI人工智能领域多智能体系统的技术原理关键词:AI人工智能、多智能体系统、技术原理、智能体交互、分布式计算摘要:本文深入探索了AI人工智能领域多智能体系统的技术原理。首先介绍了多智能体系统的背景,包括其目的、预期读者、文档结构和相关术语。接着阐述了多智能体系统的核心概念与联系,通过文本示意图和Mermaid流程图进行清晰展示。详细讲解了核心算法原理,结合Python源代码进行说明,并给出了相关
- 结合创新idea:机器学习+运筹优化=CCF高端局
Ai多利
机器学习人工智能
2024深度学习发论文&模型涨点之——机器学习+运筹优化机器学习是人工智能的一个分支,它使计算机系统能够从数据中学习并改进其性能,而无需进行明确的编程。运筹优化,也称为运筹学或运营管理,是应用数学的一个分支,它使用数学模型和算法来支持复杂决策过程的制定。机器学习与运筹优化的结合是一个前沿且活跃的研究领域,它们相互补充,为解决复杂问题提供了新的思路和方法。小编整理了一些机器学习+运筹优化【论文+代码
- 【LangChain编程:从入门到实践】LangChain与其他框架的比较
AI天才研究院
AgenticAI实战计算AI人工智能与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
【LangChain编程:从入门到实践】LangChain与其他框架的比较1.背景介绍1.1人工智能发展现状在当今时代,人工智能(AI)已经成为科技领域中最热门和最具革命性的话题之一。随着计算能力的不断提升和算法的持续优化,AI系统正在不断扩展其应用范围,包括自然语言处理、计算机视觉、决策系统等各个领域。1.2LangChain概述在这种背景下,LangChain作为一个新兴的AI框架应运而生。L
- 重塑知识的圣殿:人工智能时代的教育革命与人文守护
田园Coder
人工智能科普人工智能科普
教育,承载着文明火种传递的千年使命,其核心始终围绕两个永恒命题:如何让知识更有效地被获取?如何让个体潜能更充分地绽放?在信息爆炸、技能迭代加速的当代,传统教育模式——标准化课程、统一进度、有限师资、资源不均——正面临前所未有的压力。人工智能(AI)的崛起,如同一股强大的变革洪流,正以前所未有的深度和广度渗透教育生态的各个环节。从量身定制的学习路径到永不疲倦的智能导师,从虚拟现实的沉浸课堂到洞察学情
- 踏入真实:具身智能与物理世界的认知交响
当大型语言模型在文本的海洋中纵横捭阖,生成式AI在数字画布上挥洒创意时,人工智能仍有一个根本性的疆域尚未完全征服——真实的三维物理世界。理解一个苹果,不能仅靠词向量坐标;学会行走,无法通过阅读说明书达成;在拥挤的街道导航,远非处理符号逻辑那般简单。智能的进化,自生命诞生之初,便与具身性(Embodiment)和环境交互(Interaction)密不可分。我们的认知、学习、乃至意识的雏形,都源于身体
- 使用 C++/OpenCV 和 MFCC 构建双重认证智能门禁系统
使用C++/OpenCV和MFCC构建双重认证智能门禁系统引言随着物联网和人工智能技术的发展,智能门禁系统在安防领域的应用越来越广泛。相比于传统的钥匙、门禁卡或密码,生物识别技术(如人脸识别、指纹识别、虹膜识别等)提供了更高的安全性与便利性。然而,单一的生物识别方式在某些场景下可能存在安全隐患。例如,人脸识别可能被高清照片或视频欺骗(称为“欺骗攻击”),在光照、姿态变化剧烈时识别率也可能下降。为了
- SurveyForge:AI自动撰写综述论文的革命性工具,助力科研效率跃升
花生糖@
AIGC学习资料库人工智能AI论文AI助手
在学术研究领域,综述论文(SurveyPaper)的撰写是一项耗时且复杂的任务,通常需要数周甚至数月的文献调研与内容整合。如今,上海人工智能实验室、复旦大学与上海交通大学联合开源的SurveyForge,通过创新的AI技术,将这一过程压缩至10分钟内,且生成质量接近人工水平,成为科研人员的得力助手。项目简介SurveyForge是一款基于大语言模型(LLM)的自动综述论文生成工具,专为计算机科学领
- 面向高校的人工智能通识教育课程实验设计方案
武汉唯众智创
人工智能人工智能通识教育课程实验人工智能通识教育人工智能通识课程人工智能通识
一、前言2018年,教育部发布《高等学校人工智能创新行动计划》,明确提出“重视人工智能与计算机、控制、数学、统计学、物理学、生物学、心理学、社会学、法学等学科专业教育的交叉融合,探索‘人工智能+X’的人才培养模式”。过去,人工智能教育多集中于研究生阶段,本科生接触机会相对有限。2019年,教育部批准35所高校增设“人工智能”本科专业,这标志着人工智能正式纳入本科教育体系。如今,人工智能课程大多是计
- SpringBoot电商项目实战:从零搭建百万级架构
博主介绍:Java、Python、js全栈开发“多面手”,精通多种编程语言和技术,痴迷于人工智能领域。秉持着对技术的热爱与执着,持续探索创新,愿在此分享交流和学习,与大家共进步。DeepSeek-行业融合之万象视界(附实战案例详解100+)全栈开发环境搭建运行攻略:多语言一站式指南(环境搭建+运行+调试+发布+保姆级详解)感兴趣的可以先收藏起来,希望帮助更多的人SpringBoot电商项目实战:从
- 对股票分析时要注意哪些主要因素?
会飞的奇葩猪
股票 分析 云掌股吧
众所周知,对散户投资者来说,股票技术分析是应战股市的核心武器,想学好股票的技术分析一定要知道哪些是重点学习的,其实非常简单,我们只要记住三个要素:成交量、价格趋势、振荡指标。
一、成交量
大盘的成交量状态。成交量大说明市场的获利机会较多,成交量小说明市场的获利机会较少。当沪市的成交量超过150亿时是强市市场状态,运用技术找综合买点较准;
- 【Scala十八】视图界定与上下文界定
bit1129
scala
Context Bound,上下文界定,是Scala为隐式参数引入的一种语法糖,使得隐式转换的编码更加简洁。
隐式参数
首先引入一个泛型函数max,用于取a和b的最大值
def max[T](a: T, b: T) = {
if (a > b) a else b
}
因为T是未知类型,只有运行时才会代入真正的类型,因此调用a >
- C语言的分支——Object-C程序设计阅读有感
darkblue086
applec框架cocoa
自从1972年贝尔实验室Dennis Ritchie开发了C语言,C语言已经有了很多版本和实现,从Borland到microsoft还是GNU、Apple都提供了不同时代的多种选择,我们知道C语言是基于Thompson开发的B语言的,Object-C是以SmallTalk-80为基础的。和C++不同的是,Object C并不是C的超集,因为有很多特性与C是不同的。
Object-C程序设计这本书
- 去除浏览器对表单值的记忆
周凡杨
html记忆autocompleteform浏览
&n
- java的树形通讯录
g21121
java
最近用到企业通讯录,虽然以前也开发过,但是用的是jsf,拼成的树形,及其笨重和难维护。后来就想到直接生成json格式字符串,页面上也好展现。
// 首先取出每个部门的联系人
for (int i = 0; i < depList.size(); i++) {
List<Contacts> list = getContactList(depList.get(i
- Nginx安装部署
510888780
nginxlinux
Nginx ("engine x") 是一个高性能的 HTTP 和 反向代理 服务器,也是一个 IMAP/POP3/SMTP 代理服务器。 Nginx 是由 Igor Sysoev 为俄罗斯访问量第二的 Rambler.ru 站点开发的,第一个公开版本0.1.0发布于2004年10月4日。其将源代码以类BSD许可证的形式发布,因它的稳定性、丰富的功能集、示例配置文件和低系统资源
- java servelet异步处理请求
墙头上一根草
java异步返回servlet
servlet3.0以后支持异步处理请求,具体是使用AsyncContext ,包装httpservletRequest以及httpservletResponse具有异步的功能,
final AsyncContext ac = request.startAsync(request, response);
ac.s
- 我的spring学习笔记8-Spring中Bean的实例化
aijuans
Spring 3
在Spring中要实例化一个Bean有几种方法:
1、最常用的(普通方法)
<bean id="myBean" class="www.6e6.org.MyBean" />
使用这样方法,按Spring就会使用Bean的默认构造方法,也就是把没有参数的构造方法来建立Bean实例。
(有构造方法的下个文细说)
2、还
- 为Mysql创建最优的索引
annan211
mysql索引
索引对于良好的性能非常关键,尤其是当数据规模越来越大的时候,索引的对性能的影响越发重要。
索引经常会被误解甚至忽略,而且经常被糟糕的设计。
索引优化应该是对查询性能优化最有效的手段了,索引能够轻易将查询性能提高几个数量级,最优的索引会比
较好的索引性能要好2个数量级。
1 索引的类型
(1) B-Tree
不出意外,这里提到的索引都是指 B-
- 日期函数
百合不是茶
oraclesql日期函数查询
ORACLE日期时间函数大全
TO_DATE格式(以时间:2007-11-02 13:45:25为例)
Year:
yy two digits 两位年 显示值:07
yyy three digits 三位年 显示值:007
- 线程优先级
bijian1013
javathread多线程java多线程
多线程运行时需要定义线程运行的先后顺序。
线程优先级是用数字表示,数字越大线程优先级越高,取值在1到10,默认优先级为5。
实例:
package com.bijian.study;
/**
* 因为在代码段当中把线程B的优先级设置高于线程A,所以运行结果先执行线程B的run()方法后再执行线程A的run()方法
* 但在实际中,JAVA的优先级不准,强烈不建议用此方法来控制执
- 适配器模式和代理模式的区别
bijian1013
java设计模式
一.简介 适配器模式:适配器模式(英语:adapter pattern)有时候也称包装样式或者包装。将一个类的接口转接成用户所期待的。一个适配使得因接口不兼容而不能在一起工作的类工作在一起,做法是将类别自己的接口包裹在一个已存在的类中。 &nbs
- 【持久化框架MyBatis3三】MyBatis3 SQL映射配置文件
bit1129
Mybatis3
SQL映射配置文件一方面类似于Hibernate的映射配置文件,通过定义实体与关系表的列之间的对应关系。另一方面使用<select>,<insert>,<delete>,<update>元素定义增删改查的SQL语句,
这些元素包含三方面内容
1. 要执行的SQL语句
2. SQL语句的入参,比如查询条件
3. SQL语句的返回结果
- oracle大数据表复制备份个人经验
bitcarter
oracle大表备份大表数据复制
前提:
数据库仓库A(就拿oracle11g为例)中有两个用户user1和user2,现在有user1中有表ldm_table1,且表ldm_table1有数据5千万以上,ldm_table1中的数据是从其他库B(数据源)中抽取过来的,前期业务理解不够或者需求有变,数据有变动需要重新从B中抽取数据到A库表ldm_table1中。
- HTTP加速器varnish安装小记
ronin47
http varnish 加速
上午共享的那个varnish安装手册,个人看了下,有点不知所云,好吧~看来还是先安装玩玩!
苦逼公司服务器没法连外网,不能用什么wget或yum命令直接下载安装,每每看到别人博客贴出的在线安装代码时,总有一股羡慕嫉妒“恨”冒了出来。。。好吧,既然没法上外网,那只能麻烦点通过下载源码来编译安装了!
Varnish 3.0.4下载地址: http://repo.varnish-cache.org/
- java-73-输入一个字符串,输出该字符串中对称的子字符串的最大长度
bylijinnan
java
public class LongestSymmtricalLength {
/*
* Q75题目:输入一个字符串,输出该字符串中对称的子字符串的最大长度。
* 比如输入字符串“google”,由于该字符串里最长的对称子字符串是“goog”,因此输出4。
*/
public static void main(String[] args) {
Str
- 学习编程的一点感想
Cb123456
编程感想Gis
写点感想,总结一些,也顺便激励一些自己.现在就是复习阶段,也做做项目.
本专业是GIS专业,当初觉得本专业太水,靠这个会活不下去的,所以就报了培训班。学习的时候,进入状态很慢,而且当初进去的时候,已经上到Java高级阶段了,所以.....,呵呵,之后有点感觉了,不过,还是不好好写代码,还眼高手低的,有
- [能源与安全]美国与中国
comsci
能源
现在有一个局面:地球上的石油只剩下N桶,这些油只够让中国和美国这两个国家中的一个顺利过渡到宇宙时代,但是如果这两个国家为争夺这些石油而发生战争,其结果是两个国家都无法平稳过渡到宇宙时代。。。。而且在战争中,剩下的石油也会被快速消耗在战争中,结果是两败俱伤。。。
在这个大
- SEMI-JOIN执行计划突然变成HASH JOIN了 的原因分析
cwqcwqmax9
oracle
甲说:
A B两个表总数据量都很大,在百万以上。
idx1 idx2字段表示是索引字段
A B 两表上都有
col1字段表示普通字段
select xxx from A
where A.idx1 between mmm and nnn
and exists (select 1 from B where B.idx2 =
- SpringMVC-ajax返回值乱码解决方案
dashuaifu
AjaxspringMVCresponse中文乱码
SpringMVC-ajax返回值乱码解决方案
一:(自己总结,测试过可行)
ajax返回如果含有中文汉字,则使用:(如下例:)
@RequestMapping(value="/xxx.do") public @ResponseBody void getPunishReasonB
- Linux系统中查看日志的常用命令
dcj3sjt126com
OS
因为在日常的工作中,出问题的时候查看日志是每个管理员的习惯,作为初学者,为了以后的需要,我今天将下面这些查看命令共享给各位
cat
tail -f
日 志 文 件 说 明
/var/log/message 系统启动后的信息和错误日志,是Red Hat Linux中最常用的日志之一
/var/log/secure 与安全相关的日志信息
/var/log/maillog 与邮件相关的日志信
- [应用结构]应用
dcj3sjt126com
PHPyii2
应用主体
应用主体是管理 Yii 应用系统整体结构和生命周期的对象。 每个Yii应用系统只能包含一个应用主体,应用主体在 入口脚本中创建并能通过表达式 \Yii::$app 全局范围内访问。
补充: 当我们说"一个应用",它可能是一个应用主体对象,也可能是一个应用系统,是根据上下文来决定[译:中文为避免歧义,Application翻译为应
- assertThat用法
eksliang
JUnitassertThat
junit4.0 assertThat用法
一般匹配符1、assertThat( testedNumber, allOf( greaterThan(8), lessThan(16) ) );
注释: allOf匹配符表明如果接下来的所有条件必须都成立测试才通过,相当于“与”(&&)
2、assertThat( testedNumber, anyOf( g
- android点滴2
gundumw100
应用服务器android网络应用OSHTC
如何让Drawable绕着中心旋转?
Animation a = new RotateAnimation(0.0f, 360.0f,
Animation.RELATIVE_TO_SELF, 0.5f, Animation.RELATIVE_TO_SELF,0.5f);
a.setRepeatCount(-1);
a.setDuration(1000);
如何控制Andro
- 超简洁的CSS下拉菜单
ini
htmlWeb工作html5css
效果体验:http://hovertree.com/texiao/css/3.htmHTML文件:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>简洁的HTML+CSS下拉菜单-HoverTree</title>
- kafka consumer防止数据丢失
kane_xie
kafkaoffset commit
kafka最初是被LinkedIn设计用来处理log的分布式消息系统,因此它的着眼点不在数据的安全性(log偶尔丢几条无所谓),换句话说kafka并不能完全保证数据不丢失。
尽管kafka官网声称能够保证at-least-once,但如果consumer进程数小于partition_num,这个结论不一定成立。
考虑这样一个case,partiton_num=2
- @Repository、@Service、@Controller 和 @Component
mhtbbx
DAOspringbeanprototype
@Repository、@Service、@Controller 和 @Component 将类标识为Bean
Spring 自 2.0 版本开始,陆续引入了一些注解用于简化 Spring 的开发。@Repository注解便属于最先引入的一批,它用于将数据访问层 (DAO 层 ) 的类标识为 Spring Bean。具体只需将该注解标注在 DAO类上即可。同时,为了让 Spring 能够扫描类
- java 多线程高并发读写控制 误区
qifeifei
java thread
先看一下下面的错误代码,对写加了synchronized控制,保证了写的安全,但是问题在哪里呢?
public class testTh7 {
private String data;
public String read(){
System.out.println(Thread.currentThread().getName() + "read data "
- mongodb replica set(副本集)设置步骤
tcrct
javamongodb
网上已经有一大堆的设置步骤的了,根据我遇到的问题,整理一下,如下:
首先先去下载一个mongodb最新版,目前最新版应该是2.6
cd /usr/local/bin
wget http://fastdl.mongodb.org/linux/mongodb-linux-x86_64-2.6.0.tgz
tar -zxvf mongodb-linux-x86_64-2.6.0.t
- rust学习笔记
wudixiaotie
学习笔记
1.rust里绑定变量是let,默认绑定了的变量是不可更改的,所以如果想让变量可变就要加上mut。
let x = 1; let mut y = 2;
2.match 相当于erlang中的case,但是case的每一项后都是分号,但是rust的match却是逗号。
3.match 的每一项最后都要加逗号,但是最后一项不加也不会报错,所有结尾加逗号的用法都是类似。
4.每个语句结尾都要加分