1.4 微分
1.4.1 导数与微分
%matplotlib inline
from IPython import display
from mxnet import np, npx
from d2l import mxnet as d2l
npx.set_np()
def f(x):
return 3 * x ** 2 - 4 * x
def numerical_lim(f, x, h):
return (f(x + h) - f(x)) / h
h = 0.1
for i in range(5):
print(f'h={h:.5f}, numerical limit = {numerical_lim(f, 1, h):.5f}')
h *= 0.1
h=0.10000, numerical limit = 2.30000
h=0.01000, numerical limit = 2.03000
h=0.00100, numerical limit = 2.00300
h=0.00010, numerical limit = 2.00030
h=0.00001, numerical limit = 2.00003
def use_svg_display():
"""使⽤svg格式在Jupyter中显⽰绘图。"""
display.set_matplotlib_formats('svg')
def set_figsize(figsize = (3.5, 2.5)):
"""设置matplotlib的图表⼤⼩。"""
use_svg_display()
d2l.plt.rcParams['figure.figsize'] = figsize
def set_axes(axes, xlabel, ylabel, xlim, ylim, xscale, yscale, legend):
"""设置matplotlib的轴。"""
axes.set_xlabel(xlabel)
axes.set_ylabel(ylabel)
axes.set_xscale(xscale)
axes.set_yscale(yscale)
axes.set_xlim(xlim)
axes.set_ylim(ylim)
if legend:
axes.legend(legend)
axes.grid()
def plot(X, Y=None, xlabel=None, ylabel=None, legend=None, xlim=None,
ylim=None, xscale='linear', yscale='linear',
fmts=('-', 'm--', 'g-.', 'r:'), figsize=(3.5, 2.5), axes=None):
"""绘制数据点。"""
if legend is None:
legend = []
set_figsize(figsize)
axes = axes if axes else d2l.plt.gca()
def has_one_axis(X):
return (hasattr(X, "ndim") and X.ndim == 1 or
isinstance(X, list) and not hasattr(X[0], "__len__"))
if has_one_axis(X):
X = [X]
if Y is None:
X, Y = [[]] * len(X), X
elif has_one_axis(Y):
Y = [Y]
if len(X) != len(Y):
X = X * len(Y)
axes.cla()
for x, y, fmt in zip(X, Y, fmts):
if len(x):
axes.plot(x, y, fmt)
else:
axes.plot(y, fmt)
set_axes(axes, xlabel, ylabel, xlim, ylim, xscale, yscale, legend)
x = np.arange(0, 3, 0.1)
plot(x, [f(x), 2 * x - 3], 'x', 'f(x)', legend=['f(x)', 'Tangent line (x=1)'])
:3: DeprecationWarning: `set_matplotlib_formats` is deprecated since IPython 7.23, directly use `matplotlib_inline.backend_inline.set_matplotlib_formats()`
display.set_matplotlib_formats('svg')
1.4.2 偏导数
1.4.3 梯度
1.4.4 链式法则