# 机器学习算法(一): 基于逻辑回归的分类预测(Demo实践+基于鸢尾花(iris)数据集)

机器学习算法(一): 基于逻辑回归的分类预测

1 逻辑回归的介绍和应用

1.1 逻辑回归的介绍

逻辑回归(Logistic regression,简称LR)虽然其中带有"回归"两个字,但逻辑回归其实是一个分类模型,并且广泛应用于各个领域之中。虽然现在深度学习相对于这些传统方法更为火热,但实则这些传统方法由于其独特的优势依然广泛应用于各个领域中。

而对于逻辑回归而且,最为突出的两点就是其模型简单模型的可解释性强

逻辑回归模型的优劣势:

  • 优点:实现简单,易于理解和实现;计算代价不高,速度很快,存储资源低;
  • 缺点:容易欠拟合,分类精度可能不高

1.1 逻辑回归的应用

逻辑回归模型广泛用于各个领域,包括机器学习,大多数医学领域和社会科学。例如,最初由Boyd 等人开发的创伤和损伤严重度评分(TRISS)被广泛用于预测受伤患者的死亡率,使用逻辑回归 基于观察到的患者特征(年龄,性别,体重指数,各种血液检查的结果等)分析预测发生特定疾病(例如糖尿病,冠心病)的风险。逻辑回归模型也用于预测在给定的过程中,系统或产品的故障的可能性。还用于市场营销应用程序,例如预测客户购买产品或中止订购的倾向等。在经济学中它可以用来预测一个人选择进入劳动力市场的可能性,而商业应用则可以用来预测房主拖欠抵押贷款的可能性。条件随机字段是逻辑回归到顺序数据的扩展,用于自然语言处理。

逻辑回归模型现在同样是很多分类算法的基础组件,比如 分类任务中基于GBDT算法+LR逻辑回归实现的信用卡交易反欺诈,CTR(点击通过率)预估等,其好处在于输出值自然地落在0到1之间,并且有概率意义。模型清晰,有对应的概率学理论基础。它拟合出来的参数就代表了每一个特征(feature)对结果的影响。也是一个理解数据的好工具。但同时由于其本质上是一个线性的分类器,所以不能应对较为复杂的数据情况。很多时候我们也会拿逻辑回归模型去做一些任务尝试的基线(基础水平)。

说了这些逻辑回归的概念和应用,大家应该已经对其有所期待了吧,那么我们现在开始吧!!!

2 学习目标

  • 了解 逻辑回归 的理论
  • 掌握 逻辑回归 的 sklearn 函数调用使用并将其运用到鸢尾花数据集预测

3 代码流程

  • Part1 Demo实践

    • Step1:库函数导入
    • Step2:模型训练
    • Step3:模型参数查看
    • Step4:数据和模型可视化
    • Step5:模型预测
  • Part2 基于鸢尾花(iris)数据集的逻辑回归分类实践

    • Step1:库函数导入
    • Step2:数据读取/载入
    • Step3:数据信息简单查看
    • Step4:可视化描述
    • Step5:利用 逻辑回归模型 在二分类上 进行训练和预测
    • Step5:利用 逻辑回归模型 在三分类(多分类)上 进行训练和预测

4 算法实战

4.1 Demo实践

Step1:库函数导入

##  基础函数库
import numpy as np 

## 导入画图库
import matplotlib.pyplot as plt
import seaborn as sns

## 导入逻辑回归模型函数
from sklearn.linear_model import LogisticRegression

Step2:模型训练

##Demo演示LogisticRegression分类

## 构造数据集
x_fearures = np.array([[-1, -2], [-2, -1], [-3, -2], [1, 3], [2, 1], [3, 2]])
y_label = np.array([0, 0, 0, 1, 1, 1])

## 调用逻辑回归模型
lr_clf = LogisticRegression()

## 用逻辑回归模型拟合构造的数据集
lr_clf = lr_clf.fit(x_fearures, y_label) #其拟合方程为 y=w0+w1*x1+w2*x2

Step3:模型参数查看

## 查看其对应模型的w
print('the weight of Logistic Regression:',lr_clf.coef_)

## 查看其对应模型的w0
print('the intercept(w0) of Logistic Regression:',lr_clf.intercept_)

Step4:数据和模型可视化

## 可视化构造的数据样本点
plt.figure()
plt.scatter(x_fearures[:,0],x_fearures[:,1], c=y_label, s=50, cmap='viridis')
plt.title('Dataset')
plt.show()

# 机器学习算法(一): 基于逻辑回归的分类预测(Demo实践+基于鸢尾花(iris)数据集)_第1张图片

# 可视化决策边界
plt.figure()
plt.scatter(x_fearures[:,0],x_fearures[:,1], c=y_label, s=50, cmap='viridis')
plt.title('Dataset')

nx, ny = 200, 100
x_min, x_max = plt.xlim()
y_min, y_max = plt.ylim()
x_grid, y_grid = np.meshgrid(np.linspace(x_min, x_max, nx),np.linspace(y_min, y_max, ny))

z_proba = lr_clf.predict_proba(np.c_[x_grid.ravel(), y_grid.ravel()])
z_proba = z_proba[:, 1].reshape(x_grid.shape)
plt.contour(x_grid, y_grid, z_proba, [0.5], linewidths=2., colors='blue')

plt.show()

# 机器学习算法(一): 基于逻辑回归的分类预测(Demo实践+基于鸢尾花(iris)数据集)_第2张图片

### 可视化预测新样本

plt.figure()
## new point 1
x_fearures_new1 = np.array([[0, -1]])
plt.scatter(x_fearures_new1[:,0],x_fearures_new1[:,1], s=50, cmap='viridis')
plt.annotate(s='New point 1',xy=(0,-1),xytext=(-2,0),color='blue',arrowprops=dict(arrowstyle='-|>',connectionstyle='arc3',color='red'))

## new point 2
x_fearures_new2 = np.array([[1, 2]])
plt.scatter(x_fearures_new2[:,0],x_fearures_new2[:,1], s=50, cmap='viridis')
plt.annotate(s='New point 2',xy=(1,2),xytext=(-1.5,2.5),color='red',arrowprops=dict(arrowstyle='-|>',connectionstyle='arc3',color='red'))

## 训练样本
plt.scatter(x_fearures[:,0],x_fearures[:,1], c=y_label, s=50, cmap='viridis')
plt.title('Dataset')

# 可视化决策边界
plt.contour(x_grid, y_grid, z_proba, [0.5], linewidths=2., colors='blue')

plt.show()

# 机器学习算法(一): 基于逻辑回归的分类预测(Demo实践+基于鸢尾花(iris)数据集)_第3张图片

## 在训练集和测试集上分别利用训练好的模型进行预测
y_label_new1_predict = lr_clf.predict(x_fearures_new1)
y_label_new2_predict = lr_clf.predict(x_fearures_new2)

print('The New point 1 predict class:\n',y_label_new1_predict)
print('The New point 2 predict class:\n',y_label_new2_predict)

## 由于逻辑回归模型是概率预测模型(前文介绍的 p = p(y=1|x,\theta)),所以我们可以利用 predict_proba 函数预测其概率
y_label_new1_predict_proba = lr_clf.predict_proba(x_fearures_new1)
y_label_new2_predict_proba = lr_clf.predict_proba(x_fearures_new2)

print('The New point 1 predict Probability of each class:\n',y_label_new1_predict_proba)
print('The New point 2 predict Probability of each class:\n',y_label_new2_predict_proba)

The New point 1 predict class:
[0]
The New point 2 predict class:
[1]
The New point 1 predict Probability of each class: [[0.69567724 0.30432276]]
The New point 2 predict Probability of each class:[[0.11983936 0.88016064]]
可以发现训练好的回归模型将X_new1预测为了类别0(判别面左下侧),X_new2预测为了类别1(判别面右上侧)。其训练得到的逻辑回归模型的概率为0.5的判别面为上图中蓝色的线。

4.2 基于鸢尾花(iris)数据集的逻辑回归分类实践

在实践的最开始,我们首先需要导入一些基础的函数库包括:numpy (Python进行科学计算的基础软件包),pandas(pandas是一种快速,强大,灵活且易于使用的开源数据分析和处理工具),matplotlib和seaborn绘图。

Step1:库函数导入

##  基础函数库
import numpy as np 
import pandas as pd

## 绘图函数库
import matplotlib.pyplot as plt
import seaborn as sns

本次我们选择鸢花数据(iris)进行方法的尝试训练,该数据集一共包含5个变量,其中4个特征变量,1个目标分类变量。共有150个样本,目标变量为 花的类别 其都属于鸢尾属下的三个亚属,分别是山鸢尾 (Iris-setosa),变色鸢尾(Iris-versicolor)和维吉尼亚鸢尾(Iris-virginica)。包含的三种鸢尾花的四个特征,分别是花萼长度(cm)、花萼宽度(cm)、花瓣长度(cm)、花瓣宽度(cm),这些形态特征在过去被用来识别物种。
# 机器学习算法(一): 基于逻辑回归的分类预测(Demo实践+基于鸢尾花(iris)数据集)_第4张图片
Step2:数据读取/载入

## 我们利用 sklearn 中自带的 iris 数据作为数据载入,并利用Pandas转化为DataFrame格式
from sklearn.datasets import load_iris
data = load_iris() #得到数据特征
iris_target = data.target #得到数据对应的标签
iris_features = pd.DataFrame(data=data.data, columns=data.feature_names) #利用Pandas转化为DataFrame格式

Step3:数据信息简单查看

## 利用.info()查看数据的整体信息
iris_features.info()

# 机器学习算法(一): 基于逻辑回归的分类预测(Demo实践+基于鸢尾花(iris)数据集)_第5张图片

## 进行简单的数据查看,我们可以利用 .head() 头部.tail()尾部
iris_features.head()

# 机器学习算法(一): 基于逻辑回归的分类预测(Demo实践+基于鸢尾花(iris)数据集)_第6张图片

iris_features.tail()

# 机器学习算法(一): 基于逻辑回归的分类预测(Demo实践+基于鸢尾花(iris)数据集)_第7张图片

## 其对应的类别标签为,其中0,1,2分别代表'setosa', 'versicolor', 'virginica'三种不同花的类别。
iris_target

array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])

## 利用value_counts函数查看每个类别数量
pd.Series(iris_target).value_counts()

在这里插入图片描述

## 对于特征进行一些统计描述
iris_features.describe()

# 机器学习算法(一): 基于逻辑回归的分类预测(Demo实践+基于鸢尾花(iris)数据集)_第8张图片
Step4:可视化描述

## 合并标签和特征信息
iris_all = iris_features.copy() ##进行浅拷贝,防止对于原始数据的修改
iris_all['target'] = iris_target
## 特征与标签组合的散点可视化
sns.pairplot(data=iris_all,diag_kind='hist', hue= 'target')
plt.show()

# 机器学习算法(一): 基于逻辑回归的分类预测(Demo实践+基于鸢尾花(iris)数据集)_第9张图片

for col in iris_features.columns:
    sns.boxplot(x='target', y=col, saturation=0.5,palette='pastel', data=iris_all)
    plt.title(col)
    plt.show()

# 机器学习算法(一): 基于逻辑回归的分类预测(Demo实践+基于鸢尾花(iris)数据集)_第10张图片

# 选取其前三个特征绘制三维散点图
from mpl_toolkits.mplot3d import Axes3D

fig = plt.figure(figsize=(10,8))
ax = fig.add_subplot(111, projection='3d')

iris_all_class0 = iris_all[iris_all['target']==0].values
iris_all_class1 = iris_all[iris_all['target']==1].values
iris_all_class2 = iris_all[iris_all['target']==2].values
# 'setosa'(0), 'versicolor'(1), 'virginica'(2)
ax.scatter(iris_all_class0[:,0], iris_all_class0[:,1], iris_all_class0[:,2],label='setosa')
ax.scatter(iris_all_class1[:,0], iris_all_class1[:,1], iris_all_class1[:,2],label='versicolor')
ax.scatter(iris_all_class2[:,0], iris_all_class2[:,1], iris_all_class2[:,2],label='virginica')
plt.legend()

plt.show()

# 机器学习算法(一): 基于逻辑回归的分类预测(Demo实践+基于鸢尾花(iris)数据集)_第11张图片
Step5:利用 逻辑回归模型 在二分类上 进行训练和预测

## 为了正确评估模型性能,将数据划分为训练集和测试集,并在训练集上训练模型,在测试集上验证模型性能。
from sklearn.model_selection import train_test_split

## 选择其类别为0和1的样本 (不包括类别为2的样本)
iris_features_part = iris_features.iloc[:100]
iris_target_part = iris_target[:100]

## 测试集大小为20%, 80%/20%分
x_train, x_test, y_train, y_test = train_test_split(iris_features_part, iris_target_part, test_size = 0.2, random_state = 2020)
## 从sklearn中导入逻辑回归模型
from sklearn.linear_model import LogisticRegression
## 定义 逻辑回归模型 
clf = LogisticRegression(random_state=0, solver='lbfgs')
# 在训练集上训练逻辑回归模型
clf.fit(x_train, y_train)

LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
intercept_scaling=1, l1_ratio=None, max_iter=100,
multi_class=‘auto’, n_jobs=None, penalty=‘l2’,
random_state=0, solver=‘lbfgs’, tol=0.0001, verbose=0,
warm_start=False)

## 查看其对应的w
print('the weight of Logistic Regression:',clf.coef_)

## 查看其对应的w0
print('the intercept(w0) of Logistic Regression:',clf.intercept_)

the weight of Logistic Regression: [[ 0.45181973 -0.81743611 2.14470304 0.89838607]]
the intercept(w0) of Logistic Regression: [-6.53367714]

## 在训练集和测试集上分布利用训练好的模型进行预测
train_predict = clf.predict(x_train)
test_predict = clf.predict(x_test)
from sklearn import metrics

## 利用accuracy(准确度)【预测正确的样本数目占总预测样本数目的比例】评估模型效果
print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_train,train_predict))
print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_test,test_predict))

## 查看混淆矩阵 (预测值和真实值的各类情况统计矩阵)
confusion_matrix_result = metrics.confusion_matrix(test_predict,y_test)
print('The confusion matrix result:\n',confusion_matrix_result)

# 利用热力图对于结果进行可视化
plt.figure(figsize=(8, 6))
sns.heatmap(confusion_matrix_result, annot=True, cmap='Blues')
plt.xlabel('Predicted labels')
plt.ylabel('True labels')
plt.show()

# 机器学习算法(一): 基于逻辑回归的分类预测(Demo实践+基于鸢尾花(iris)数据集)_第12张图片
Step6:利用 逻辑回归模型 在三分类(多分类)上 进行训练和预测

## 测试集大小为20%, 80%/20%分
x_train, x_test, y_train, y_test = train_test_split(iris_features, iris_target, test_size = 0.2, random_state = 2020)
## 定义 逻辑回归模型 
clf = LogisticRegression(random_state=0, solver='lbfgs')
# 在训练集上训练逻辑回归模型
clf.fit(x_train, y_train)

LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
intercept_scaling=1, l1_ratio=None, max_iter=100,
multi_class=‘auto’, n_jobs=None, penalty=‘l2’,
random_state=0, solver=‘lbfgs’, tol=0.0001, verbose=0,
warm_start=False

## 查看其对应的w
print('the weight of Logistic Regression:\n',clf.coef_)

## 查看其对应的w0
print('the intercept(w0) of Logistic Regression:\n',clf.intercept_)

## 由于这个是3分类,所有我们这里得到了三个逻辑回归模型的参数,其三个逻辑回归组合起来即可实现三分类。

the weight of Logistic Regression:
[[-0.45928925 0.83069886 -2.26606531 -0.9974398 ]
[ 0.33117319 -0.72863423 -0.06841147 -0.9871103 ]
[ 0.12811606 -0.10206463 2.33447679 1.9845501 ]]
the intercept(w0) of Logistic Regression:
[ 9.43880677 3.93047364 -13.36928041]

## 在训练集和测试集上分布利用训练好的模型进行预测
train_predict = clf.predict(x_train)
test_predict = clf.predict(x_test)

## 由于逻辑回归模型是概率预测模型(前文介绍的 p = p(y=1|x,\theta)),所有我们可以利用 predict_proba 函数预测其概率
train_predict_proba = clf.predict_proba(x_train)
test_predict_proba = clf.predict_proba(x_test)

print('The test predict Probability of each class:\n',test_predict_proba)
## 其中第一列代表预测为0类的概率,第二列代表预测为1类的概率,第三列代表预测为2类的概率。

## 利用accuracy(准确度)【预测正确的样本数目占总预测样本数目的比例】评估模型效果
print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_train,train_predict))
print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_test,test_predict))

The test predict Probability of each class:
[[1.03461734e-05 2.33279475e-02 9.76661706e-01]
[9.69926591e-01 3.00732875e-02 1.21676996e-07]
[2.09992547e-02 8.69156617e-01 1.09844128e-01]
[3.61934870e-03 7.91979966e-01 2.04400685e-01]
[7.90943202e-03 8.00605300e-01 1.91485268e-01]
[7.30034960e-04 6.60508053e-01 3.38761912e-01]
[1.68614209e-04 1.86322045e-01 8.13509341e-01]
[1.06915332e-01 8.90815532e-01 2.26913667e-03]
[9.46928070e-01 5.30707294e-02 1.20016057e-06]
[9.62346385e-01 3.76532233e-02 3.91897289e-07]
[1.19533384e-04 1.38823468e-01 8.61056998e-01]
[8.78881883e-03 6.97207361e-01 2.94003820e-01]
[9.73938143e-01 2.60617346e-02 1.22613836e-07]
[1.78434056e-03 4.79518177e-01 5.18697482e-01]
[5.56924342e-04 2.46776841e-01 7.52666235e-01]
[9.83549842e-01 1.64500670e-02 9.13617258e-08]
[1.65201477e-02 9.54672749e-01 2.88071038e-02]
[8.99853708e-03 7.82707576e-01 2.08293887e-01]
[2.98015025e-05 5.45900066e-02 9.45380192e-01]
[9.35695863e-01 6.43039513e-02 1.85301359e-07]
[9.80621190e-01 1.93787400e-02 7.00125246e-08]
[1.68478815e-04 3.30167226e-01 6.69664295e-01]
[3.54046163e-03 4.02267805e-01 5.94191734e-01]
[9.70617284e-01 2.93824740e-02 2.42443967e-07]
[2.56895205e-04 1.54631583e-01 8.45111522e-01]
[3.48668490e-02 9.11966141e-01 5.31670105e-02]
[1.47218847e-02 6.84038115e-01 3.01240001e-01]
[9.46510447e-04 4.28641987e-01 5.70411503e-01]
[9.64848137e-01 3.51516748e-02 1.87917880e-07]
[9.70436779e-01 2.95624025e-02 8.18591606e-07]]
The accuracy of the Logistic Regression is: 0.9833333333333333
The accuracy of the Logistic Regression is: 0.8666666666666667

## 查看混淆矩阵
confusion_matrix_result = metrics.confusion_matrix(test_predict,y_test)
print('The confusion matrix result:\n',confusion_matrix_result)

# 利用热力图对于结果进行可视化
plt.figure(figsize=(8, 6))
sns.heatmap(confusion_matrix_result, annot=True, cmap='Blues')
plt.xlabel('Predicted labels')
plt.ylabel('True labels')
plt.show()

# 机器学习算法(一): 基于逻辑回归的分类预测(Demo实践+基于鸢尾花(iris)数据集)_第13张图片

5 重要知识点

逻辑回归 原理简介:

Logistic回归虽然名字里带“回归”,但是它实际上是一种分类方法,主要用于两分类问题(即输出只有两种,分别代表两个类别),所以利用了Logistic函数(或称为Sigmoid函数),函数形式为:
l o g i ( z ) = 1 1 + e − z logi(z)=\frac{1}{1+e^{-z}} logi(z)=1+ez1

其对应的函数图像可以表示如下:

import numpy as np
import matplotlib.pyplot as plt
x = np.arange(-5,5,0.01)
y = 1/(1+np.exp(-x))

plt.plot(x,y)
plt.xlabel('z')
plt.ylabel('y')
plt.grid()
plt.show()

# 机器学习算法(一): 基于逻辑回归的分类预测(Demo实践+基于鸢尾花(iris)数据集)_第14张图片
通过上图我们可以发现 Logistic 函数是单调递增函数,并且在z=0的时候取值为0.5,并且 l o g i ( ⋅ ) logi(\cdot) logi()函数的取值范围为 ( 0 , 1 ) (0,1) (0,1)

而回归的基本方程为 z = w 0 + ∑ i N w i x i z=w_0+\sum_i^N w_ix_i z=w0+iNwixi

将回归方程写入其中为:
p = p ( y = 1 ∣ x , θ ) = h θ ( x , θ ) = 1 1 + e − ( w 0 + ∑ i N w i x i ) p = p(y=1|x,\theta) = h_\theta(x,\theta)=\frac{1}{1+e^{-(w_0+\sum_i^N w_ix_i)}} p=p(y=1x,θ)=hθ(x,θ)=1+e(w0+iNwixi)1

所以, p ( y = 1 ∣ x , θ ) = h θ ( x , θ ) p(y=1|x,\theta) = h_\theta(x,\theta) p(y=1x,θ)=hθ(x,θ) p ( y = 0 ∣ x , θ ) = 1 − h θ ( x , θ ) p(y=0|x,\theta) = 1-h_\theta(x,\theta) p(y=0x,θ)=1hθ(x,θ)

逻辑回归从其原理上来说,逻辑回归其实是实现了一个决策边界:对于函数 y = 1 1 + e − z y=\frac{1}{1+e^{-z}} y=1+ez1,当 z = > 0 z=>0 z=>0时, y = > 0.5 y=>0.5 y=>0.5,分类为1,当 z < 0 z<0 z<0时, y < 0.5 y<0.5 y<0.5,分类为0,其对应的 y y y值我们可以视为类别1的概率预测值.

对于模型的训练而言:实质上来说就是利用数据求解出对应的模型的特定的 w w w。从而得到一个针对于当前数据的特征逻辑回归模型。

而对于多分类而言,将多个二分类的逻辑回归组合,即可实现多分类。

END

你可能感兴趣的:(机器学习算法,机器学习,python,可视化)