- Pytorch实现之利用特征分布的差异来指导GAN的训练
这张生成的图像能检测吗
优质GAN模型训练自己的数据集GAN系列pytorch生成对抗网络人工智能神经网络深度学习计算机视觉机器学习
简介简介:FIDGAN通过将FID损失引入GAN的训练过程,显著提升了生成图像的质量。其核心思想是利用特征分布的差异来指导生成器的训练,同时通过使用轻量级的MobileNet-v3提高了计算效率。这种方法在图像生成任务中具有广泛的应用前景。论文题目:FIDGAN:AGenerativeAdversarialNetworkwithAnInceptionDistance(FIDGAN:具有初始距离的生
- Pytorch实现论文之利用多生成器来预防模式崩溃
这张生成的图像能检测吗
GAN系列优质GAN模型训练自己的数据集人工智能python生成对抗网络机器学习pytorch深度学习计算机视觉
简介简介:一般来说,生成器相比判别器要完成的任务更加困难,前者需要完成数据概率密度的拟合,而后者只需要判别真伪,影响GAN性能的一个问题就是模式奔溃。而采用多生成器可以缓解这个问题。论文中主要设计了多生成器的架构和一个对于鉴别器的新损失设计来缓解这个问题。模型结构采用DCGAN的框架,原始损失基于WGAN-GP的设计理念。论文题目:StudyofPreventionofModeCollapsein
- 深度学习模型中的知识蒸馏是如何工作的?
c++服务器开发
深度学习人工智能
深度学习模型在多个领域,特别是计算机视觉和自然语言处理中,已经取得了革命性的进展。然而,随着模型复杂性和资源需求的不断攀升,如何将这些庞大模型的知识浓缩为更紧凑、更高效的形式,成为了当前研究的热点。知识蒸馏,作为一种将知识从复杂模型转移到更简单模型的策略,已经成为实现这一目标的有效工具。在本文中,我们将深入探究深度学习模型中知识蒸馏的概念、原理及其在各领域的应用,以期为读者提供一个全面而严谨的视角
- 【开源免费】基于Vue和SpringBoot的医院后台管理系统(附论文)
杨荧
vue.jsspringboot前端开源springcloudjavascript
本文项目编号T170,文末自助获取源码\color{red}{T170,文末自助获取源码}T170,文末自助获取源码目录一、系统介绍二、数据库设计三、配套教程3.1启动教程3.2讲解视频3.3二次开发教程四、功能截图五、文案资料5.1选题背景5.2国内外研究现状六、核心代码6.1查询数据6.2新增数据6.3删除数据一、系统介绍在管理员功能模块确定下来的基础上,对管理员各个功能进行设计,确定管理员功
- Python从0到100(四):Python中的运算符介绍(补充)
是Dream呀
pythonjava数据库
前言:零基础学Python:Python从0到100最新最全教程。想做这件事情很久了,这次我更新了自己所写过的所有博客,汇集成了Python从0到100,共一百节课,帮助大家一个月时间里从零基础到学习Python基础语法、Python爬虫、Web开发、计算机视觉、机器学习、神经网络以及人工智能相关知识,成为学习学习和学业的先行者!欢迎大家订阅专栏:零基础学Python:Python从0到100最新
- Python从0到100(三十五):beautifulsoup的学习
是Dream呀
Dream的茶话会pythonbeautifulsoup学习
前言:零基础学Python:Python从0到100最新最全教程。想做这件事情很久了,这次我更新了自己所写过的所有博客,汇集成了Python从0到100,共一百节课,帮助大家一个月时间里从零基础到学习Python基础语法、Python爬虫、Web开发、计算机视觉、机器学习、神经网络以及人工智能相关知识,成为学习学习和学业的先行者!欢迎大家订阅专栏:零基础学Python:Python从0到100最新
- 《深入浅出AI》前言知识:深度学习基础总结
GoAI
深入浅出AI人工智能深度学习机器学习cnnrnn生成对抗网络神经网络
个人主页:GoAI|公众号:GoAI的学习小屋|交流群:704932595|个人简介:掘金签约作者、百度飞桨PPDE、领航团团长、开源特训营导师、CSDN、阿里云社区人工智能领域博客专家、新星计划计算机视觉方向导师等,专注大数据与人工智能知识分享。AI学习星球推荐:GoAI的学习社区知识星球是一个致力于提供《机器学习|深度学习|CV|NLP|大模型|多模态|AIGC》各个最新AI方向综述、论文等成
- 学术必备的21个论文网站,建议收藏!
初尘屿风
人工智能深度学习全文检索学习方法百度
1、综合型论文网站(国内)(1)知网介绍:国内知名度最高的网站,拥有上亿篇各种论文期刊,包含中国学术文献、外文文献、学位论文、报纸、会议、年鉴、工具书等各类资源统一检索、统一导航、在线阅读和下载服务。网址:https://www.cnki.net/(2)掌桥科研介绍:掌桥科研文献资源库涵盖中英文期刊,会议,学位论文、科技报告等多种资源,拥有1.2多亿文献资源,值得一提的是,它整合了目前国际上主流的
- A new method for forward-looking scanning radar imaging based on L1/2 regularization 论文阅读
yangqoor
论文阅读
Anewmethodforforward-lookingscanningradarimagingbasedonL1/2regularization论文阅读内容概述关键创新点1.论文的研究目标研究目标2.新方法的特点与优势传统方法局限L1/2L_{1/2}L1/2正则化的创新优势对比3.实验设计与结果分析实验设置关键结果数据支持可借鉴的创新点与学习建议核心创新点推荐学习路径内容概述该论文提出了一种基
- 书籍-《机器人与智能自主系统:技术与应用(论文版)》
机器人人工智能
书籍:RoboticsandSmartAutonomousSystems:TechnologyandApplications作者:RashmiPriyadarshini,RamMohanMehra,AmitSehgal,PrabhuJyotSingh出版:CRCPress编辑:陈萍萍的公主@一点人工一点智能下载:书籍下载-《机器人与智能自主系统:技术与应用(论文版)》01书籍介绍本书详细探讨了机器
- OpenCV的卡尔曼滤波器:实现和应用
雪域Code
opencv人工智能计算机视觉C/C++
OpenCV的卡尔曼滤波器:实现和应用卡尔曼滤波器(Kalmanfilter)是一种最优估计的算法,在众多领域有着广泛的应用,如控制系统、通信系统、机器人等。OpenCV作为一个计算机视觉库,也提供了对卡尔曼滤波器的支持。本文将介绍OpenCV中卡尔曼滤波器的基本原理、实现方法以及在图像处理中的应用。一、卡尔曼滤波器简介卡尔曼滤波器是一种用于状态估计和信号滤波的算法,主要针对线性、高斯分布的系统。
- 生成式AI如何重塑计算机视觉:自监督学习与稀疏计算的革命
ProgramHan
人工智能计算机视觉学习
生成式AI如何重塑计算机视觉:自监督学习与稀疏计算的革命引言:从“数据饥渴”到“智能涌现”传统计算机视觉高度依赖海量标注数据,但现实场景中标注成本高昂且覆盖范围有限。例如,医疗影像标注需专业医生耗时数月,工业缺陷检测需针对特定产线定制数据集。生成式AI(如Diffusion模型、自监督学习)的崛起,正在打破这一瓶颈——通过更高效的训练范式与计算架构,让机器学会“从无标注数据中看见世界”。(示意图:
- 【深度学习】计算机视觉(CV)-目标检测-DETR(DEtection TRansformer)—— 基于 Transformer 的端到端目标检测
IT古董
深度学习人工智能深度学习计算机视觉目标检测
1.什么是DETR?DETR(DEtectionTRansformer)是FacebookAI(FAIR)于2020年提出的端到端目标检测算法,它基于Transformer架构,消除了FasterR-CNN、YOLO等方法中的候选框(AnchorBoxes)和非极大值抑制(NMS)机制,使目标检测变得更简单、高效。论文:End-to-EndObjectDetectionwithTransforme
- 系统软件架构设计师--学习规划
杰尼龟的知识花园
高级系统架构设计师(软考)学习架构架构设计师软考高项
目录软考基础信息新老教材对比科目一考点科目二考点科目三考点学习规划-三个阶段软考基础信息中国计算机技术职业资格网:https://www.ruankao.org.cn考试时间:5月25~28日11月09~12日考试科目:科目一:综合知识【总分75】考试时间:8:30-11:00客观题:75空单选题(最长作答时长150分钟)最好是控制在120分钟做完科目三:论文写作【总分75】考试时间:14:30-
- 基于微信小程序的电影院订票选座系统的设计与实现,SSM+Vue+毕业论文+开题报告+任务书+指导搭建视频
初尘屿风
Javaweb毕业设计初尘屿风微信小程序vue.js小程序
本系统包含用户、管理员两个角色。用户角色:注册登录、查看首页电影信息推荐、查看电影详情并进行收藏预定、查看电影资讯、在线客服、管理个人订单等。管理员角色:登录后台、管理电影类型、管理放映厅信息、管理电影信息、管理用户信息、管理订单等。运行环境jdk8+mysql+IntelliJIDEA+maven3+微信开发者工具项目技术Spring+SpringMvc+Mybatis+html+css+js+
- 【系统架构设计师】论文模板样例:论软件系统架构风格
数据知道
系统架构架构软考高级系统架构设计师论文
更多内容请见:备考系统架构设计师-核心总结索引文章目录范文一:论软件系统架构风格范例摘要正文收尾范文一:论软件系统架构风格系统架构风格(SystemArchitectureStyle)是描述某一特定应用领域中系统组织方式的惯用模式。架构风格定义了一个词汇表和一组约束,词汇表中包含一些构件和连接件类型,而这组约束指出系统是如何将这些构件和连接件组合起来的。软件系统架构风格反映了领域中众多软件系统所共
- 医学顶会 MICCAI‘24 | COVID19 至肺炎:使用 CNN Transformer 位置感知特征编码网络对多区域肺部严重程度进行分类
小白学视觉
医学图像处理论文解读cnntransformer分类深度学习医学图像处理医学图像顶会论文解读
本文内容只为星球内部成员学习和学术交流,请勿用作他用论文信息题目:COVID19toPneumonia:MultiRegionLungSeverityClassificationusingCNNTransformerPosition-AwareFeatureEncodingNetworkCOVID19至肺炎:使用CNNTransformer位置感知特征编码网络对多区域肺部严重程度进行分类作者:Jo
- 机器学习:支持向量机
小源学AI
人工智能支持向量机机器学习算法
基本概念1.什么是支持向量机支持向量机是一种二分类模型,在机器学习、计算机视觉、数据挖掘中广泛应用,主要用于解决数据分类问题,它的目的是寻找一个超平面对样本进行分割,分割的原则是间隔最大化(也就是数据集的边缘点到分界点的距离d最大)最终转化成一个凸二次规划问题来求解。通常的SVM用于二元分类问题,对于多元分类问题可将其分解为多个二元分类问题,在进行分类。2.最优分类边界什么才是最优分类边界?什么条
- arXiv每日推荐-3.4:语音/音频每日论文速递
sapienst
语音识别语音识别
同步公众号(arXiv每日学术速递)【1】SELD-TCN:SoundEventLocalization&DetectionviaTemporalConvolutionalNetworks标题:SELD-TCN:基于时间卷积网络的声音事件定位与检测作者:KarimGuirguis,BinYang备注:5pages,3tables,2figures.SubmittedtoEUSIPCO2020链接:
- 关于DeepSeek与ChatGPT等模型的原始训练数据
月光技术杂谈
大模型初探chatgptdeepseek训练数据语料库AI模型训练样本数据分类
DeepSeek与ChatGPT等模型的原始训练数据是否一样训练数据的相似性与差异性相似性:DeepSeek和ChatGPT等模型在训练数据上有一定的重叠。它们都使用了大量的公开互联网文本,包括网页内容、书籍、论文、社交媒体帖子等。这些数据为模型提供了广泛的知识基础和语言理解能力。差异性:DeepSeek更侧重于中文语境的优化,因此其训练数据中包含了更多的中文互联网内容,如新闻、论坛、百科等。而C
- 基于图像处理的裂缝检测与特征提取
机器懒得学习
图像处理计算机视觉人工智能
一、引言裂缝检测是基础设施监测中至关重要的一项任务,尤其是在土木工程和建筑工程领域。随着自动化技术的发展,传统的人工巡检方法逐渐被基于图像分析的自动化检测系统所取代。通过计算机视觉和图像处理技术,能够高效、精确地提取裂缝的几何特征,如长度、宽度、方向、面积等,从而为工程质量评估提供数据支持。本文将详细介绍一段用于裂缝检测与特征提取的Python代码,重点讲解其实现的核心算法与关键步骤,分析其应用场
- [论文阅读] SeeSR: Towards Semantics-Aware Real-World Image Super-Resolution
qianx77
论文阅读pytorch论文阅读人工智能计算机视觉
文章目录一、前言二、主要贡献三、Introduction四、Methodology4.1Motivation:4.2FrameworkOverview.**一、前言通信作者是香港理工大学&OPPO研究所的张磊教授,也是图像超分ISR的一个大牛了。论文如下SeeSR:TowardsSemantics-AwareReal-WorldImageSuper-Resolution[paper][code]二
- Pytorch实现论文之一种基于扰动卷积层和梯度归一化的生成对抗网络
这张生成的图像能检测吗
GAN系列优质GAN模型训练自己的数据集pytorch人工智能机器学习生成对抗网络神经网络计算机视觉深度学习
简介简介:提出了一种针对鉴别器的梯度惩罚方法和在鉴别器中采用扰动卷积,拟解决锐梯度空间引起的训练不稳定性问题和判别器的记忆问题。论文题目:APerturbedConvolutionalLayerandGradientNormalizationbasedGenerativeAdversarialNetwork(一种基于扰动卷积层和梯度归一化的生成对抗网络)会议:20244thInternationa
- Pytorch实现之在LSGAN中结合重建损失
这张生成的图像能检测吗
GAN系列优质GAN模型训练自己的数据集pytorch人工智能python
简介简介:这篇论文在LSGAN的基础上结合了重建损失来产生通过传统不良数据检测(BDD)机制的人工测量。这篇博客的主要内容是关于实现了重建损失与LSGAN的结合。论文题目:FalseDataInjectionAttacksBasedonLeastSquaresGenerativeAdversarialNetworkswithReconstructionLoss(基于重构损失最小二乘生成对抗网络的虚
- Pytorch实现论文:利用推土机距离与梯度惩罚在ACGAN中训练。
这张生成的图像能检测吗
优质GAN模型训练自己的数据集pytorch人工智能深度学习gan机器学习生成对抗网络
论文简介论文:ACWGAN-GPformillingtoolbreakagemonitoringwithimbalanceddata(ACWGAN-GP用于铣削工具断裂监视的数据不平衡数据)出处:RoboticsandComputer-IntegratedManufacturing论文摘要:铣削操作过程中的刀具破损监测(TBM)对于确保工件质量和最大限度减少经济损失至关重要。在训练数据充足、分布均
- Pytorch实现论文之三元DCGAN生成RGB图像用于红外图像着色生成
这张生成的图像能检测吗
GAN系列优质GAN模型训练自己的数据集人工智能python生成对抗网络深度学习pytorch机器学习计算机视觉
简介简介:采用了三次DCGAN单独生成单通道图像之后进行组成RGB图像放入鉴别器中检测,并在鉴别器和生成器的损失训练中采用梯度方法来提升或者降低权重。该方法将用于获得红外图像着色的生成。论文题目:InfraredImageColorizationbasedonaTripletDCGANArchitecture(基于三元DCGAN架构的红外图像着色)会议:2017IEEEConferenceonCo
- 利用 OpenCV 进行棋盘检测与透视变换
萧鼎
python基础到进阶教程opencv人工智能计算机视觉
利用OpenCV进行棋盘检测与透视变换1.引言在计算机视觉领域,棋盘检测与透视变换是一个常见的任务,广泛应用于摄像机标定、文档扫描、增强现实(AR)等场景。本篇文章将详细介绍如何使用OpenCV进行棋盘检测,并通过透视变换将棋盘区域转换为一个标准的矩形图像。我们将基于一段Python代码进行分析,代码的主要任务包括:读取图像并进行预处理(灰度转换、自适应直方图均衡化、去噪)检测边缘并提取棋盘区域计
- LLM论文笔记 9: Neural Networks and the Chomsky Hierarchy
Zhouqi_Hua
大模型论文阅读论文阅读人工智能深度学习笔记语言模型
Arxiv日期:2022.9.29机构:GoogleDeepMind/Stanford关键词transformer架构原理乔姆斯基体系长度泛化核心结论1.虽然Transformer理论上具有图灵完备性,但在实践中能力受到位置不变性和有限记忆的限制2.Transformer在一些任务中表现较差,例如正则语言任务(如ParityCheck),表明其与Chomsky层级的对齐性不佳3.Transform
- [论文笔记] Cost-Effective Hyperparameter Optimization for Large Language Model Generation 大型语言模型生成推理超参优化
心心喵
论文笔记论文阅读语言模型人工智能
成本效益高的大型语言模型生成推理的超参数优化https://openreview.net/pdf?id=DoGmh8A39OChiWang1,SusanXueqingLiu2,AhmedH.Awadallah11微软研究院,雷德蒙德2史蒂文斯理工学院摘要大型语言模型(LLMs)因其生成能力引发了广泛关注,催生了各种商业应用。使用这些模型的高成本驱使应用构建者在有限的推理预算下最大化生成的价值。本文
- CVPR2023 Highlight | ECON:最新单图穿衣人三维重建SOTA算法
3D视觉工坊
3D视觉从入门到精通算法SLAM自动驾驶3D视觉
作者:宁了个宁|来源:计算机视觉工坊在公众号「3D视觉工坊」后台,回复「原论文」可获取论文pdf。添加微信:dddvisiona,备注:三维重建,拉你入群。文末附行业细分群。图1所示。从彩色图像进行人体数字化。ECON结合了自由形式隐式表示的最佳方面,以及明确的拟人化正则化,以推断高保真度的3D人类,即使是宽松的衣服或具有挑战性的姿势。0.笔者个人体会这篇文章讨论了单图像的穿着人类重建问题。隐式方
- 面向对象面向过程
3213213333332132
java
面向对象:把要完成的一件事,通过对象间的协作实现。
面向过程:把要完成的一件事,通过循序依次调用各个模块实现。
我把大象装进冰箱这件事为例,用面向对象和面向过程实现,都是用java代码完成。
1、面向对象
package bigDemo.ObjectOriented;
/**
* 大象类
*
* @Description
* @author FuJian
- Java Hotspot: Remove the Permanent Generation
bookjovi
HotSpot
openjdk上关于hotspot将移除永久带的描述非常详细,http://openjdk.java.net/jeps/122
JEP 122: Remove the Permanent Generation
Author Jon Masamitsu
Organization Oracle
Created 2010/8/15
Updated 2011/
- 正则表达式向前查找向后查找,环绕或零宽断言
dcj3sjt126com
正则表达式
向前查找和向后查找
1. 向前查找:根据要匹配的字符序列后面存在一个特定的字符序列(肯定式向前查找)或不存在一个特定的序列(否定式向前查找)来决定是否匹配。.NET将向前查找称之为零宽度向前查找断言。
对于向前查找,出现在指定项之后的字符序列不会被正则表达式引擎返回。
2. 向后查找:一个要匹配的字符序列前面有或者没有指定的
- BaseDao
171815164
seda
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
public class BaseDao {
public Conn
- Ant标签详解--Java命令
g21121
Java命令
这一篇主要介绍与java相关标签的使用 终于开始重头戏了,Java部分是我们关注的重点也是项目中用处最多的部分。
1
- [简单]代码片段_电梯数字排列
53873039oycg
代码
今天看电梯数字排列是9 18 26这样呈倒N排列的,写了个类似的打印例子,如下:
import java.util.Arrays;
public class 电梯数字排列_S3_Test {
public static void main(S
- Hessian原理
云端月影
hessian原理
Hessian 原理分析
一. 远程通讯协议的基本原理
网络通信需要做的就是将流从一台计算机传输到另外一台计算机,基于传输协议和网络 IO 来实现,其中传输协议比较出名的有 http 、 tcp 、 udp 等等, http 、 tcp 、 udp 都是在基于 Socket 概念上为某类应用场景而扩展出的传输协
- 区分Activity的四种加载模式----以及Intent的setFlags
aijuans
android
在多Activity开发中,有可能是自己应用之间的Activity跳转,或者夹带其他应用的可复用Activity。可能会希望跳转到原来某个Activity实例,而不是产生大量重复的Activity。
这需要为Activity配置特定的加载模式,而不是使用默认的加载模式。 加载模式分类及在哪里配置
Activity有四种加载模式:
standard
singleTop
- hibernate几个核心API及其查询分析
antonyup_2006
html.netHibernatexml配置管理
(一) org.hibernate.cfg.Configuration类
读取配置文件并创建唯一的SessionFactory对象.(一般,程序初始化hibernate时创建.)
Configuration co
- PL/SQL的流程控制
百合不是茶
oraclePL/SQL编程循环控制
PL/SQL也是一门高级语言,所以流程控制是必须要有的,oracle数据库的pl/sql比sqlserver数据库要难,很多pl/sql中有的sqlserver里面没有
流程控制;
分支语句 if 条件 then 结果 else 结果 end if ;
条件语句 case when 条件 then 结果;
循环语句 loop
- 强大的Mockito测试框架
bijian1013
mockito单元测试
一.自动生成Mock类 在需要Mock的属性上标记@Mock注解,然后@RunWith中配置Mockito的TestRunner或者在setUp()方法中显示调用MockitoAnnotations.initMocks(this);生成Mock类即可。二.自动注入Mock类到被测试类 &nbs
- 精通Oracle10编程SQL(11)开发子程序
bijian1013
oracle数据库plsql
/*
*开发子程序
*/
--子程序目是指被命名的PL/SQL块,这种块可以带有参数,可以在不同应用程序中多次调用
--PL/SQL有两种类型的子程序:过程和函数
--开发过程
--建立过程:不带任何参数
CREATE OR REPLACE PROCEDURE out_time
IS
BEGIN
DBMS_OUTPUT.put_line(systimestamp);
E
- 【EhCache一】EhCache版Hello World
bit1129
Hello world
本篇是EhCache系列的第一篇,总体介绍使用EhCache缓存进行CRUD的API的基本使用,更细节的内容包括EhCache源代码和设计、实现原理在接下来的文章中进行介绍
环境准备
1.新建Maven项目
2.添加EhCache的Maven依赖
<dependency>
<groupId>ne
- 学习EJB3基础知识笔记
白糖_
beanHibernatejbosswebserviceejb
最近项目进入系统测试阶段,全赖袁大虾领导有力,保持一周零bug记录,这也让自己腾出不少时间补充知识。花了两天时间把“传智播客EJB3.0”看完了,EJB基本的知识也有些了解,在这记录下EJB的部分知识,以供自己以后复习使用。
EJB是sun的服务器端组件模型,最大的用处是部署分布式应用程序。EJB (Enterprise JavaBean)是J2EE的一部分,定义了一个用于开发基
- angular.bootstrap
boyitech
AngularJSAngularJS APIangular中文api
angular.bootstrap
描述:
手动初始化angular。
这个函数会自动检测创建的module有没有被加载多次,如果有则会在浏览器的控制台打出警告日志,并且不会再次加载。这样可以避免在程序运行过程中许多奇怪的问题发生。
使用方法: angular .
- java-谷歌面试题-给定一个固定长度的数组,将递增整数序列写入这个数组。当写到数组尾部时,返回数组开始重新写,并覆盖先前写过的数
bylijinnan
java
public class SearchInShiftedArray {
/**
* 题目:给定一个固定长度的数组,将递增整数序列写入这个数组。当写到数组尾部时,返回数组开始重新写,并覆盖先前写过的数。
* 请在这个特殊数组中找出给定的整数。
* 解答:
* 其实就是“旋转数组”。旋转数组的最小元素见http://bylijinnan.iteye.com/bl
- 天使还是魔鬼?都是我们制造
ducklsl
生活教育情感
----------------------------剧透请原谅,有兴趣的朋友可以自己看看电影,互相讨论哦!!!
从厦门回来的动车上,无意中瞟到了书中推荐的几部关于儿童的电影。当然,这几部电影可能会另大家失望,并不是类似小鬼当家的电影,而是关于“坏小孩”的电影!
自己挑了两部先看了看,但是发现看完之后,心里久久不能平
- [机器智能与生物]研究生物智能的问题
comsci
生物
我想,人的神经网络和苍蝇的神经网络,并没有本质的区别...就是大规模拓扑系统和中小规模拓扑分析的区别....
但是,如果去研究活体人类的神经网络和脑系统,可能会受到一些法律和道德方面的限制,而且研究结果也不一定可靠,那么希望从事生物神经网络研究的朋友,不如把
- 获取Android Device的信息
dai_lm
android
String phoneInfo = "PRODUCT: " + android.os.Build.PRODUCT;
phoneInfo += ", CPU_ABI: " + android.os.Build.CPU_ABI;
phoneInfo += ", TAGS: " + android.os.Build.TAGS;
ph
- 最佳字符串匹配算法(Damerau-Levenshtein距离算法)的Java实现
datamachine
java算法字符串匹配
原文:http://www.javacodegeeks.com/2013/11/java-implementation-of-optimal-string-alignment.html------------------------------------------------------------------------------------------------------------
- 小学5年级英语单词背诵第一课
dcj3sjt126com
englishword
long 长的
show 给...看,出示
mouth 口,嘴
write 写
use 用,使用
take 拿,带来
hand 手
clever 聪明的
often 经常
wash 洗
slow 慢的
house 房子
water 水
clean 清洁的
supper 晚餐
out 在外
face 脸,
- macvim的使用实战
dcj3sjt126com
macvim
macvim用的是mac里面的vim, 只不过是一个GUI的APP, 相当于一个壳
1. 下载macvim
https://code.google.com/p/macvim/
2. 了解macvim
:h vim的使用帮助信息
:h macvim
- java二分法查找
蕃薯耀
java二分法查找二分法java二分法
java二分法查找
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年6月23日 11:40:03 星期二
http:/
- Spring Cache注解+Memcached
hanqunfeng
springmemcached
Spring3.1 Cache注解
依赖jar包:
<!-- simple-spring-memcached -->
<dependency>
<groupId>com.google.code.simple-spring-memcached</groupId>
<artifactId>simple-s
- apache commons io包快速入门
jackyrong
apache commons
原文参考
http://www.javacodegeeks.com/2014/10/apache-commons-io-tutorial.html
Apache Commons IO 包绝对是好东西,地址在http://commons.apache.org/proper/commons-io/,下面用例子分别介绍:
1) 工具类
2
- 如何学习编程
lampcy
java编程C++c
首先,我想说一下学习思想.学编程其实跟网络游戏有着类似的效果.开始的时候,你会对那些代码,函数等产生很大的兴趣,尤其是刚接触编程的人,刚学习第一种语言的人.可是,当你一步步深入的时候,你会发现你没有了以前那种斗志.就好象你在玩韩国泡菜网游似的,玩到一定程度,每天就是练级练级,完全是一个想冲到高级别的意志力在支持着你.而学编程就更难了,学了两个月后,总是觉得你好象全都学会了,却又什么都做不了,又没有
- 架构师之spring-----spring3.0新特性的bean加载控制@DependsOn和@Lazy
nannan408
Spring3
1.前言。
如题。
2.描述。
@DependsOn用于强制初始化其他Bean。可以修饰Bean类或方法,使用该Annotation时可以指定一个字符串数组作为参数,每个数组元素对应于一个强制初始化的Bean。
@DependsOn({"steelAxe","abc"})
@Comp
- Spring4+quartz2的配置和代码方式调度
Everyday都不同
代码配置spring4quartz2.x定时任务
前言:这些天简直被quartz虐哭。。因为quartz 2.x版本相比quartz1.x版本的API改动太多,所以,只好自己去查阅底层API……
quartz定时任务必须搞清楚几个概念:
JobDetail——处理类
Trigger——触发器,指定触发时间,必须要有JobDetail属性,即触发对象
Scheduler——调度器,组织处理类和触发器,配置方式一般只需指定触发
- Hibernate入门
tntxia
Hibernate
前言
使用面向对象的语言和关系型的数据库,开发起来很繁琐,费时。由于现在流行的数据库都不面向对象。Hibernate 是一个Java的ORM(Object/Relational Mapping)解决方案。
Hibernte不仅关心把Java对象对应到数据库的表中,而且提供了请求和检索的方法。简化了手工进行JDBC操作的流程。
如
- Math类
xiaoxing598
Math
一、Java中的数字(Math)类是final类,不可继承。
1、常数 PI:double圆周率 E:double自然对数
2、截取(注意方法的返回类型) double ceil(double d) 返回不小于d的最小整数 double floor(double d) 返回不大于d的整最大数 int round(float f) 返回四舍五入后的整数 long round