- 自动驾驶之心规划控制理论&实战课程
vsdvsvfhf
自动驾驶人工智能机器学习
单目3D与单目BEV全栈教程(视频答疑)多传感器标定全栈系统学习教程多传感器融合:毫米波雷达和视觉融合感知全栈教程(深度学习传统方式)多传感器融合跟踪全栈教程(视频答疑)多模态融合3D目标检测教程(视频答疑)规划控制理论&实战课程国内首个BEV感知全栈系列学习教程首个基于Transformer的分割检测视觉大模型视频课程CUDA与TensorRT部署实战课程(视频答疑)Occupancy从入门到精
- 【XR】优化SLAM SDK的稳定性
大江东去浪淘尽千古风流人物
xr
优化SLAMSDK的稳定性是确保增强现实(AR)和虚拟现实(VR)应用在各种环境和设备上都能稳定运行的关键。以下是一些主要的优化方法:1.传感器融合优化方法:将多个传感器的数据(如摄像头、加速度计、陀螺仪、磁力计)进行融合,以补偿单一传感器可能存在的误差。优势:提高了环境理解的准确性,减少了由于单一传感器误差导致的抖动和漂移现象。实例:ARKit和ARCore都利用了传感器融合技术来增强稳定性。2
- 无人机及固定机巢自动化控制软件技术详解
无人机技术圈
无人机技术无人机自动化运维
随着科技的飞速发展,无人机技术已成为众多行业中不可或缺的一部分,特别是在航拍、环境监测、农业植保、应急救援等领域展现出巨大潜力。无人机及固定机巢自动化控制软件作为支撑无人机高效、安全、自主运行的核心,集成了先进的系统架构、飞行控制算法、传感器技术、通信协议及数据处理能力。本文将从系统架构设计、飞行控制算法、传感器融合技术、通信与数据传输、自主巡航与定位、故障检测与预警、应急响应与处理、数据处理与报
- 华为问界M9:领跑未来智能交通的自动驾驶黑科技
华西建筑关联专业公司 华鲲智慧
华为自动驾驶科技
华为问界M9是一款高端电动汽车,其自动驾驶技术是该车型的重要卖点之一。华为在问界M9上采用了多种传感器和高级算法,实现了在不同场景下的自动驾驶功能,包括自动泊车、自适应巡航、车道保持、自动变道等。华为问界M9的自动驾驶技术惊艳之处在于其传感器融合和算法优化。通过多种传感器的融合,车辆可以更加精准地感知周围环境,并实现更加智能的决策和控制。同时,华为在自动驾驶算法方面也进行了大量的优化和改进,使得车
- 基于机器视觉的智能防疫巡检机器人结构设计
biyezuopinvip
机器人机器视觉防疫机器人巡检机器人毕业设计cad图纸论文
目录摘要11绪论31.1课题研究意义31.2智能防疫机器人的现状及发展31.3移动机器人技术的研究现状51.4智能防疫巡检机器人软件研究现状61.5多传感器融合研究现状61.6论文主要内容及结构安排72智能防疫巡检机器人系统需求分析与整体方案设计82.1系统设计的需求分析82.1.1功能需求82.1.2性能需求82.2智能防疫巡检机器人系统方案设计102.2.1整体方案102.2.2软件系统方案1
- veloview读二维雷达数据_Windows下VLP16激光雷达数据解析
大嘴博士
veloview读二维雷达数据
最近,实验室有一个对VLP16数据解析的需求,要求在Windows系统下单独把VLP16的数据解析整理出来,作为后期多传感器融合的一个必要基础准备。无奈从ROS转战Windows,网上查了查Windows系统下velodyne激光雷达的驱动,只找到了一个VeloView,很复杂,VeloView依赖winpcap、paraview、qt、python......单独摘出数据解析模块很麻烦。Kitw
- 环境配置:Udacity的Self-Driving项目安装运行
马上到我碗里来
#环境配置Udacity自动驾驶环境配置
前言Udacity的自动驾驶工程师纳米学位项目(Self-DrivingCarEngineerNanodegreeProgram)是一项面向学习者的前沿技术项目,旨在提供全面的自动驾驶工程师培训。该项目由Udacity与自动驾驶领域的领先公司和专业人士合作开发,涵盖了从传感器融合到深度学习等多个方面的内容。本篇内容将介绍此项目如何在自己的环境中进行配置。希望大家通过这个项目,能够在自动驾驶领域取得
- 基于Raspberry Pi的自动巡航与避障系统(二)
GT开发算法工程师
人工智能python矩阵opencv
在上一篇中,我们讨论了智能小车的避障逻辑实现,在本篇中,我们将进一步扩展智能小车的功能,包括更高级的避障策略、路径规划和导航功能,同时,我们还将提供相应的代码示例,以帮助读者更好地理解和实现这些功能。更高级的避障策略多传感器融合避障:结合使用超声波传感器、红外传感器和摄像头等多种传感器,通过数据融合算法,提高障碍物检测的准确性和可靠性。这样,智能小车可以更准确地判断障碍物的位置、大小和形状,从而采
- 【PMF代码复现及可视化】ICCV 2021 基于视觉感知的多传感器融合点云语义分割
努力弹琴的大风天
融合语义分割算法PMF人工智能计算机视觉
前言本文在Ubuntu18.04下,使用python3.6pytorch1.8.2+torchvision0.9.2环境运行。电脑配置:NVIDIAGeForceRTX3060。显卡不是特别好,运行训练代码花费4天11个小时。数据集非常大,原始数据集按照数据集格式和架构配置完成165.2GB左右,生成semantic-kitti-fov数据集28.1G。如果没有足够的空间,不建议跑这个论文项目。考
- 第一周文献阅读报告
半个轮子工
论文阅读物联网
文献阅读报告泛读1.《毫米波与太赫兹技术》2.《基于物联网的智能养老系统》3.《基于空间聚类的FMCW雷达双人行为识别方法》4.《太赫兹应用分析和展望》5.《车载毫米波雷达应用研究》6.《基于压力传感器的跌倒检测系统研究》7.《基于隐马尔可夫模型的老年人跌倒行为检测方法研究望》8.《矿用卡车毫米波雷达防碰撞系统的研究与应用》9.《基于YOLO网络的人体跌倒检测方法》10.《基于多传感器融合的老人跌
- 解锁多模态独特魅力-“机器人+Agent+多传感器融合+3DLLM”诠释终极组合大招!
xwz小王子
LLM机器人机器人3d自感知全能家务
01-Multiply算法背景01.01-触觉传感器触觉传感器是一种用于感知和测量物体接触力、形状、纹理和其他相关参数的传感器。它们模拟人类触觉系统,通过收集和解释物体与传感器之间的相互作用来获取信息。工作原理:触觉传感器使用不同的原理来感知接触力和其他触觉信息。常见的触觉传感器技术包括压电传感器、电容传感器、电阻传感器、光学传感器和弹性元件等。接触力测量:触觉传感器能够测量物体施加在其表面的接触
- 基于多传感器的后融合的目标跟踪如何实现?都有哪些基本流程?
自动驾驶之心
目标跟踪人工智能计算机视觉机器学习
点击下方卡片,关注“自动驾驶之心”公众号ADAS巨卷干货,即可获取讲师:Edison课程内容:基于多传感器后融合的目标跟踪(0.课前导学1.自动驾驶中的融合跟踪)笔记作者:王汝嘉0.课前导学0.1主讲人介绍0.2课程关键词0.3学习资料推荐1.自动驾驶中的融合跟踪1.1自动驾驶中的感知任务1.2多传感器融合的主要方法1.3多传感器融合跟踪的基本流程1.4多目标跟踪的数据集与性能指标以上内容均出自《
- 2020-05-20
bokli_dw
启发式算法:与过去的经验有关空缺几页少一张回顾遗传算法:交叉变异的概率每年考试是开卷做控制、天线、光通信。你的研究方向是什么?你觉得哪门智能信息处理方法可以在你的研究方向上很有帮助??第九章多传感器融合技术知识表示-模糊集-粗集神经网络-机器学习最重要的是搜索--智能算法:遗传、免疫、蚁群算法。每个算法在哪方面运用起来最得心应手就用哪个fusion--融合无人驾驶:融合很多的信息--信息融合是将来
- Ethzasl MSF编译与运行
稻壳特筑
SLAMC++多信息融合SLAM
多传感器融合框架EthzaslMSFFramework编译与运行:对应论文:ARobustandModularMulti-SensorFusionApproachAppliedtoMAVNavigation.2013RIOS.对应代码:https://github.com/ethz-asl/ethzasl_msf系统:Ubuntu16.03+ROSKinetic创建工作空间:mkdir-p/MSF
- 论文笔记(二十)VisuoTactile 6D Pose Estimation of an In-Hand Object using Vision and Tactile Sensor Data
墨绿色的摆渡人
文章深度学习物体姿势估计系统
VisuoTactile6DPoseEstimationofanIn-HandObjectusingVisionandTactileSensorData文章概括摘要1.介绍2.背景3.网络结构A.视觉触觉传感器融合B.姿势估计器C.损失函数4.数据集的生成A.触觉传感器不变的姿态估计B.数据收集设置C.数据集特征5.实验A.网络训练设置B.硬件部署6.结果A.量化评估B.定性评价C.消融研究D.与
- 多传感器融合SLAM数学学习历程
SensorFusion
多传感器融合学习
多传感器融合SLAM数学学习历程>>>流形和流形空间(姿态)https://blog.csdn.net/professor_Xie/article/details/131911894fast-lio带着问题看知识欧式空间和流形空间的区别和联系?基本结构:欧式空间是我们熟悉的传统三维空间,其中的点由三个实数(x、y、z)表示,具有直角坐标系。在欧式空间中,可以进行常规的线性运算和加法操作。而流形空间
- 革命性突破!全新多传感器辅助惯性导航系统,效能与精准度并肩
3DCV
自动驾驶人工智能机器学习计算机视觉深度学习
作者:小柠檬|来源:3DCV在公众号「3DCV」后台,回复「原论文」获取论文和项目地址大家好,给大家推荐一种高效、强大的多传感器辅助惯性导航系统,具有在线校准功能,能够融合IMU、摄像头、LiDAR、GPS/GNSS和车轮传感器。使用案例:VINS/VIO、GPS-INS、LINS/LIO、用于定位和建图的多传感器融合(SLAM)。原文链接:革命性突破!全新多传感器辅助惯性导航系统,效能与精准度并
- AI加速器与机器学习算法:协同设计与进化
江太翁
人工智能人工智能机器学习算法
作者|ShashankPrasanna翻译|胡燕君此刻,你应该是在电脑或手机上看这篇文章。不管怎样,这些机器都属于现代计算机,它们都有中央处理器(CPU)和其他为特定功能服务的专用芯片,例如显卡、声卡、网卡、传感器融合等。处理特定任务时,专用处理器往往比通用CPU更快更高效。计算机发展早期,CPU都会和专用处理器配合使用。1970年代的8位和16位CPU需要依赖软件来模拟浮点指令,因此执行浮点运算
- 点云从入门到精通技术详解100篇-基于多传感器融合的紧耦合 SLAM 算法
格图素书
自动驾驶人工智能机器学习
目录前言多传感器融合的SLAM相关设备及技术介绍2.1三维刚体运动模型2.1.1坐标系变换
- Autoware 开源框架车辆运动学建模推导
秃头队长
Autoware
学习Autoware开源框架的资料整理,侵删!开源自动驾驶框架Autoware介绍Autoware包含以下模块:1.定位:通过结合GNSS和IMU传感器的3D地图和SLAM算法来实现定位2.检测:使用具有传感器融合算法和深度神经网络的摄像机以及LiDAR3.预测和规划:基于概率机器人技术和基于规则的系统,部分还使用深度神经网络4.控制:Autoware向车辆输出的速度和角速度的扭曲量以上四个模块覆
- 自动驾驶感知-预测-决策-规划-控制学习(3):感知方向文献阅读笔记
棉花糖永远滴神
自动驾驶学习笔记
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言一、文章主题二、摘要阅读1.名词理解①点云是什么?②二维图像分割器③轻量化卷积网络提取特征④单模态表达和多模态特征融合的区别⑤基于ROS的多传感器融合感知⑥TensorRT工具2.总结摘要三、绪论解析1.首先分析了车道线检测方面有三类工作2.又分析了三维目标检测研究的三类工作3.综述各章节内容四、硬件与软件设计1.总体方案
- 高精地图新基线 | SuperFusion:多层次Lidar-Camera融合,nuScenes SOTA!
自动驾驶之心
点击下方卡片,关注“自动驾驶之心”公众号ADAS巨卷干货,即可获取点击进入→自动驾驶之心【多传感器融合】技术交流群后台回复【SuperFusion】获取本文代码!!!摘要环境的高精(HD)语义地图生成是自动驾驶的一个重要组成部分。现有方法通过融合不同的传感器模式(如激光雷达和相机),在这项任务中取得了良好的性能。然而,目前的工作基于原始数据或网络特征级融合,仅考虑短距离高精地图生成,限制了其部署到
- 多传感器融合学习笔记
AI视觉网奇
3D视觉学习笔记
目录BevFusionBEVFormer(ECCV2022)eagerMOT利用2D+3D数据多目标跟踪Download3Dand2Ddetections,whichonestodownloaddependsonwhatyouwanttorun:BevFusion最小的模型530多mBevFusion是一种多传感器融合技术,它可以将来自不同传感器(如LiDAR和相机)的数据融合到一个统一的BEV表
- 车载毫米波雷达及芯片新趋势研究3--自动驾驶、国产替代与外延场景需求快速增长打开市场空间
奔袭的算法工程师
行业资讯自动驾驶人工智能机器学习目标检测深度学习
3.1多传感器融合路线优势将不断扩大,引发更多毫米波雷达及芯片需求纯视觉自动驾驶路线是通过以光学摄像头为传感器结合大量算法训练以模拟人类视觉驾驶为逻辑的自动驾驶方案。纯视觉方案“轻硬件、重软件”,由其采用的摄像头成本较低,纯视觉方案的整体硬件成本较低。多传感器融合自动驾驶路线的原理是通过多种类型传感器共同收集路况信息和数据,并通过算法自动分析和综合完成自动驾驶决策的方案。多传感器融合路线能够集
- 【多传感器融合导航论文阅读】
今天我刷leetcode了吗
论文阅读学习方法
多传感器融合导航论文积累知识点总结因子图一致因子图文献阅读笔记[IF18.6]知识点总结因子图FactorGraph是概率图的一种,是对函数因子分解的表示图,一般内含两种节点,变量节点和函数节点。因子图存在着:两类节点:变量节点和对应的函数节点变量节点所代表的变量是函数节点的自变量。同类节点之间没有边直接相连。一致因子图一致性指的是在该框架中能够保持一致性地更新变量的值,使得整个概率图模型中的变量
- 【论文笔记】Learned Fusion: 3D Object Detection using Calibration-Free Transformer Feature Fusion
byzy
#激光雷达与图像融合论文阅读目标检测计算机视觉自动驾驶深度学习
原文链接:https://arxiv.org/abs/2312.090821.引言目前的3D目标检测一来传感器的校准信息。这种情况下,校准信息需要及其精确,但在产品尺度上,获取高质量校准信息是很困难的(需要逐传感器校准,且运行过程中可能会变化)。本文基于Transformer,提出无需校准信息的传感器融合方法。3.方法从基于Transformer的方法中直接移除校准信息会导致训练困难。3.1Tra
- UBX M8T-10 DSP开发和NMEA解析
汪汪星河
算法
特殊名词:l惯性导航(DR)解决方案采用惯性传感器(陀螺仪和加速计)来辅助GNSS定位技术。l无约束惯性导航(UDR)解决方案持续测量与监测车辆加速度及其方向变化,再通过传感器融合技术将测量数据与GNSS数据进行整合,实时计算并优化分析出更精准的位置结果。l车载惯性导航(ADR)解决方案在此基础上则更进一步,可将车辆轮速脉冲传感器的数据进行整合,实现更高精度的位置计算结果。UbxM8:Ublox-
- 《LIO-SAM阅读笔记》1.IMU预积分模块
Jiqiang_z
机器人linux笔记
前言:LIO-SAM是一个多传感器融合的紧耦合SLAM框架,融合的传感器类型有雷达、IMU和GPS,其中雷达和IMU在LIO-SAM框架中必须使用的。LIO-SAM的优化策略采用了GTSAM库,GTSAM库采用了因子图的优化方法,其提供了一些列C++的外部接口,以便用户方便传入参数等进行优化。特别的是GTSAM库专门单独设计关于IMU计算与优化的接口。IMU预积分模块在LIO-SAM源码中写在了i
- 当我们在讨论多模态融合时?我们究竟在讨论什么?最新多源融合综述!
自动驾驶之心
点击下方卡片,关注“自动驾驶之心”公众号ADAS巨卷干货,即可获取今天自动驾驶之心很荣幸邀请到Xizhu来分享自动驾驶最新的多源传感器融合综述!如果您有相关工作需要分享,请在文末联系我们!>>点击进入→自动驾驶之心【多传感器融合】技术交流群论文作者|Xizhu编辑|自动驾驶之心很荣幸来分享我们的多源数据融合综述~这篇综述文章所关注的核心问题是自动驾驶系统中的多源数据融合技术。多源数据融合对自动驾驶
- 机器人制作开源方案 | “校园卫士”-智能巡检机器人
Robotway
机器人开源
作者:程训聪、柳贺凯、赵坤峰、叶智超、高仁伟单位:黑龙江科技大学指导老师:邵文冕、李杨1.摘要针对校园巡检需求设计机器人本体结构,借助Arduino作为控制核心的巡检机器人控制系统构建方法研究了巡检机器人在校园环境下的导航、控制、多传感器融合等问题。结果表明:该套系统的研发有效解决了校园巡检机器人的攀爬障碍、火灾检测、智能人脸检测、佩戴口罩识别等问题,通过采用分布式结构,保障了整个系统的实时性,实
- 二分查找排序算法
周凡杨
java二分查找排序算法折半
一:概念 二分查找又称
折半查找(
折半搜索/
二分搜索),优点是比较次数少,查找速度快,平均性能好;其缺点是要求待查表为有序表,且插入删除困难。因此,折半查找方法适用于不经常变动而 查找频繁的有序列表。首先,假设表中元素是按升序排列,将表中间位置记录的关键字与查找关键字比较,如果两者相等,则查找成功;否则利用中间位置记录将表 分成前、后两个子表,如果中间位置记录的关键字大于查找关键字,则进一步
- java中的BigDecimal
bijian1013
javaBigDecimal
在项目开发过程中出现精度丢失问题,查资料用BigDecimal解决,并发现如下这篇BigDecimal的解决问题的思路和方法很值得学习,特转载。
原文地址:http://blog.csdn.net/ugg/article/de
- Shell echo命令详解
daizj
echoshell
Shell echo命令
Shell 的 echo 指令与 PHP 的 echo 指令类似,都是用于字符串的输出。命令格式:
echo string
您可以使用echo实现更复杂的输出格式控制。 1.显示普通字符串:
echo "It is a test"
这里的双引号完全可以省略,以下命令与上面实例效果一致:
echo Itis a test 2.显示转义
- Oracle DBA 简单操作
周凡杨
oracle dba sql
--执行次数多的SQL
select sql_text,executions from (
select sql_text,executions from v$sqlarea order by executions desc
) where rownum<81;
&nb
- 画图重绘
朱辉辉33
游戏
我第一次接触重绘是编写五子棋小游戏的时候,因为游戏里的棋盘是用线绘制的,而这些东西并不在系统自带的重绘里,所以在移动窗体时,棋盘并不会重绘出来。所以我们要重写系统的重绘方法。
在重写系统重绘方法时,我们要注意一定要调用父类的重绘方法,即加上super.paint(g),因为如果不调用父类的重绘方式,重写后会把父类的重绘覆盖掉,而父类的重绘方法是绘制画布,这样就导致我们
- 线程之初体验
西蜀石兰
线程
一直觉得多线程是学Java的一个分水岭,懂多线程才算入门。
之前看《编程思想》的多线程章节,看的云里雾里,知道线程类有哪几个方法,却依旧不知道线程到底是什么?书上都写线程是进程的模块,共享线程的资源,可是这跟多线程编程有毛线的关系,呜呜。。。
线程其实也是用户自定义的任务,不要过多的强调线程的属性,而忽略了线程最基本的属性。
你可以在线程类的run()方法中定义自己的任务,就跟正常的Ja
- linux集群互相免登陆配置
林鹤霄
linux
配置ssh免登陆
1、生成秘钥和公钥 ssh-keygen -t rsa
2、提示让你输入,什么都不输,三次回车之后会在~下面的.ssh文件夹中多出两个文件id_rsa 和 id_rsa.pub
其中id_rsa为秘钥,id_rsa.pub为公钥,使用公钥加密的数据只有私钥才能对这些数据解密 c
- mysql : Lock wait timeout exceeded; try restarting transaction
aigo
mysql
原文:http://www.cnblogs.com/freeliver54/archive/2010/09/30/1839042.html
原因是你使用的InnoDB 表类型的时候,
默认参数:innodb_lock_wait_timeout设置锁等待的时间是50s,
因为有的锁等待超过了这个时间,所以抱错.
你可以把这个时间加长,或者优化存储
- Socket编程 基本的聊天实现。
alleni123
socket
public class Server
{
//用来存储所有连接上来的客户
private List<ServerThread> clients;
public static void main(String[] args)
{
Server s = new Server();
s.startServer(9988);
}
publi
- 多线程监听器事件模式(一个简单的例子)
百合不是茶
线程监听模式
多线程的事件监听器模式
监听器时间模式经常与多线程使用,在多线程中如何知道我的线程正在执行那什么内容,可以通过时间监听器模式得到
创建多线程的事件监听器模式 思路:
1, 创建线程并启动,在创建线程的位置设置一个标记
2,创建队
- spring InitializingBean接口
bijian1013
javaspring
spring的事务的TransactionTemplate,其源码如下:
public class TransactionTemplate extends DefaultTransactionDefinition implements TransactionOperations, InitializingBean{
...
}
TransactionTemplate继承了DefaultT
- Oracle中询表的权限被授予给了哪些用户
bijian1013
oracle数据库权限
Oracle查询表将权限赋给了哪些用户的SQL,以备查用。
select t.table_name as "表名",
t.grantee as "被授权的属组",
t.owner as "对象所在的属组"
- 【Struts2五】Struts2 参数传值
bit1129
struts2
Struts2中参数传值的3种情况
1.请求参数绑定到Action的实例字段上
2.Action将值传递到转发的视图上
3.Action将值传递到重定向的视图上
一、请求参数绑定到Action的实例字段上以及Action将值传递到转发的视图上
Struts可以自动将请求URL中的请求参数或者表单提交的参数绑定到Action定义的实例字段上,绑定的规则使用ognl表达式语言
- 【Kafka十四】关于auto.offset.reset[Q/A]
bit1129
kafka
I got serveral questions about auto.offset.reset. This configuration parameter governs how consumer read the message from Kafka when there is no initial offset in ZooKeeper or
- nginx gzip压缩配置
ronin47
nginx gzip 压缩范例
nginx gzip压缩配置 更多
0
nginx
gzip
配置
随着nginx的发展,越来越多的网站使用nginx,因此nginx的优化变得越来越重要,今天我们来看看nginx的gzip压缩到底是怎么压缩的呢?
gzip(GNU-ZIP)是一种压缩技术。经过gzip压缩后页面大小可以变为原来的30%甚至更小,这样,用
- java-13.输入一个单向链表,输出该链表中倒数第 k 个节点
bylijinnan
java
two cursors.
Make the first cursor go K steps first.
/*
* 第 13 题:题目:输入一个单向链表,输出该链表中倒数第 k 个节点
*/
public void displayKthItemsBackWard(ListNode head,int k){
ListNode p1=head,p2=head;
- Spring源码学习-JdbcTemplate queryForObject
bylijinnan
javaspring
JdbcTemplate中有两个可能会混淆的queryForObject方法:
1.
Object queryForObject(String sql, Object[] args, Class requiredType)
2.
Object queryForObject(String sql, Object[] args, RowMapper rowMapper)
第1个方法是只查
- [冰川时代]在冰川时代,我们需要什么样的技术?
comsci
技术
看美国那边的气候情况....我有个感觉...是不是要进入小冰期了?
那么在小冰期里面...我们的户外活动肯定会出现很多问题...在室内呆着的情况会非常多...怎么在室内呆着而不发闷...怎么用最低的电力保证室内的温度.....这都需要技术手段...
&nb
- js 获取浏览器型号
cuityang
js浏览器
根据浏览器获取iphone和apk的下载地址
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" content="text/html"/>
<meta name=
- C# socks5详解 转
dalan_123
socketC#
http://www.cnblogs.com/zhujiechang/archive/2008/10/21/1316308.html 这里主要讲的是用.NET实现基于Socket5下面的代理协议进行客户端的通讯,Socket4的实现是类似的,注意的事,这里不是讲用C#实现一个代理服务器,因为实现一个代理服务器需要实现很多协议,头大,而且现在市面上有很多现成的代理服务器用,性能又好,
- 运维 Centos问题汇总
dcj3sjt126com
云主机
一、sh 脚本不执行的原因
sh脚本不执行的原因 只有2个
1.权限不够
2.sh脚本里路径没写完整。
二、解决You have new mail in /var/spool/mail/root
修改/usr/share/logwatch/default.conf/logwatch.conf配置文件
MailTo =
MailFrom
三、查询连接数
- Yii防注入攻击笔记
dcj3sjt126com
sqlWEB安全yii
网站表单有注入漏洞须对所有用户输入的内容进行个过滤和检查,可以使用正则表达式或者直接输入字符判断,大部分是只允许输入字母和数字的,其它字符度不允许;对于内容复杂表单的内容,应该对html和script的符号进行转义替换:尤其是<,>,',"",&这几个符号 这里有个转义对照表:
http://blog.csdn.net/xinzhu1990/articl
- MongoDB简介[一]
eksliang
mongodbMongoDB简介
MongoDB简介
转载请出自出处:http://eksliang.iteye.com/blog/2173288 1.1易于使用
MongoDB是一个面向文档的数据库,而不是关系型数据库。与关系型数据库相比,面向文档的数据库不再有行的概念,取而代之的是更为灵活的“文档”模型。
另外,不
- zookeeper windows 入门安装和测试
greemranqq
zookeeper安装分布式
一、序言
以下是我对zookeeper 的一些理解: zookeeper 作为一个服务注册信息存储的管理工具,好吧,这样说得很抽象,我们举个“栗子”。
栗子1号:
假设我是一家KTV的老板,我同时拥有5家KTV,我肯定得时刻监视
- Spring之使用事务缘由(2-注解实现)
ihuning
spring
Spring事务注解实现
1. 依赖包:
1.1 spring包:
spring-beans-4.0.0.RELEASE.jar
spring-context-4.0.0.
- iOS App Launch Option
啸笑天
option
iOS 程序启动时总会调用application:didFinishLaunchingWithOptions:,其中第二个参数launchOptions为NSDictionary类型的对象,里面存储有此程序启动的原因。
launchOptions中的可能键值见UIApplication Class Reference的Launch Options Keys节 。
1、若用户直接
- jdk与jre的区别(_)
macroli
javajvmjdk
简单的说JDK是面向开发人员使用的SDK,它提供了Java的开发环境和运行环境。SDK是Software Development Kit 一般指软件开发包,可以包括函数库、编译程序等。
JDK就是Java Development Kit JRE是Java Runtime Enviroment是指Java的运行环境,是面向Java程序的使用者,而不是开发者。 如果安装了JDK,会发同你
- Updates were rejected because the tip of your current branch is behind
qiaolevip
学习永无止境每天进步一点点众观千象git
$ git push joe prod-2295-1
To
[email protected]:joe.le/dr-frontend.git
! [rejected] prod-2295-1 -> prod-2295-1 (non-fast-forward)
error: failed to push some refs to '
[email protected]
- [一起学Hive]之十四-Hive的元数据表结构详解
superlxw1234
hivehive元数据结构
关键字:Hive元数据、Hive元数据表结构
之前在 “[一起学Hive]之一–Hive概述,Hive是什么”中介绍过,Hive自己维护了一套元数据,用户通过HQL查询时候,Hive首先需要结合元数据,将HQL翻译成MapReduce去执行。
本文介绍一下Hive元数据中重要的一些表结构及用途,以Hive0.13为例。
文章最后面,会以一个示例来全面了解一下,
- Spring 3.2.14,4.1.7,4.2.RC2发布
wiselyman
Spring 3
Spring 3.2.14、4.1.7及4.2.RC2于6月30日发布。
其中Spring 3.2.1是一个维护版本(维护周期到2016-12-31截止),后续会继续根据需求和bug发布维护版本。此时,Spring官方强烈建议升级Spring框架至4.1.7 或者将要发布的4.2 。
其中Spring 4.1.7主要包含这些更新内容。