YOLO模型训练自己数据-VOC格式数据集制作-ubuntu c++文件夹内图片批量读取与重命名...

参考)YOLOv2训练自己的数据集(voc格式)进行实验,基本上是正确的,但其初始给出的代码并非是在linux下可以运行的,因此参考部分博客写了下面的程序,可以实现对文件夹内图片的批量读取以及更改名称符合VOC数据集习惯。另原文有部分小错误,本文已经修改,但后文属于转载,版权属原作者所有,本文仅为记录和交流用。如下文所示。

1 准备数据

首先准备好自己的数据集,最好固定格式,此处以VOC为例,采用jpg格式的图像,在名字上最好使用像VOC一样类似000001.jpg、000002.jpg这样。可使用下面示例代码

#include 
#include 
#include 
#include 
#include 
#include 

#define img_num 2000
char img_file[img_num][1000];

int list_dir_name(char* dirname, int tabs)
{
    DIR* dp;
    struct dirent* dirp;
    struct stat st;
    char tab[tabs + 1];
		char img_count=0;

    /* open dirent directory */
    if((dp = opendir(dirname)) == NULL)
    {
        perror("opendir");
        return -1;
    }



    /* fill tab array with tabs */
    memset(tab, '\t', tabs);
    tab[tabs] = 0;

    /**
     * read all files in this dir
     **/
    while((dirp = readdir(dp)) != NULL)

    {
        char fullname[255];
        memset(fullname, 0, sizeof(fullname));

        /* ignore hidden files */
        if(dirp->d_name[0] == '.')
            continue;

        /* display file name */
        //printf("img_name:%s\n", dirp->d_name);

        strncpy(fullname, dirname, sizeof(fullname));
        strncat(fullname, dirp->d_name, sizeof(fullname));
	    strcat(img_file[img_count++], fullname);				
	    printf("Image %3d path:%s\n",img_count-1,img_file[img_count-1]);//fullname=dir+file name,the absolute path of the image file        

				/* get dirent status */
        if(stat(fullname, &st) == -1)
        {
            perror("stat");
            fputs(fullname, stderr);
            return -1;
        }
        /* if dirent is a directory, call itself */
        if(S_ISDIR(st.st_mode) && list_dir_name(fullname, tabs + 1) == -1)
            return -1;
    }
    return img_count;

}

int main(int argc, char* argv[])
{
	char* dir="/home/robot/Downloads/mark_recognition/car_img/simple_3class/";
        printf("%s\n", dir);

        char sum=list_dir_name(dir, 1);
	printf("Img total num:%d\n",sum);

	int i;
	char order[1000];

	char txt_path[1000];
	char* txt_name="train.txt";
	memset(txt_path, 0, sizeof(txt_path));
	strcat(txt_path,dir);
	strcat(txt_path,txt_name);
	FILE *fp = fopen(txt_path, "w");

	for (i = 0; i

准备好了自己的图像后,需要按VOC数据集的结构放置图像文件。VOC的结构如下
[plain]  view plain  copy
  1. --VOC  
  2.     --Annotations  
  3.     --ImageSets  
  4.       --Main  
  5.       --Layout  
  6.       --Segmentation  
  7.     --JPEGImages  
  8.     --SegmentationClass  
  9.     --SegmentationObject  
      这里面用到的文件夹是 Annotations、ImageSets和JPEGImages。其中文件夹 Annotation中主要存放xml文件,每一个xml对应一张图像,并且每个xml中存放的是标记的各个目标的位置和类别信息,命名通常与对应的原始图像一样;而ImageSets我们只需要用到Main文件夹,这里面存放的是一些文本文件,通常为train.txt、test.txt等,该文本文件里面的内容是需要用来训练或测试的图像的名字(无后缀无路径);JPEGImages文件夹中放我们已按统一规则命名好的原始图像。
      因此,首先
      1.新建文件夹VOC2007(通常命名为这个,也可以用其他命名,但一定是名字+年份,例如MYDATA2016,无论叫什么后面都需要改相关代码匹配这里,本例中以 VOC2007为例)
      2.在VOC2007文件夹下新建三个文件夹 Annotations、ImageSets和JPEGImages,并把准备好的自己的原始图像放在JPEGImages文件夹下
      3.在ImageSets文件夹中,新建三个空文件夹Layout、Main、Segmentation,然后把写了训练或测试的图像的名字的文本拷到Main文件夹下,按目的命名,我这里所 有图像用来训练,故而Main文件夹下只有train.txt文件。上面代码运行后会在图片文件夹内生成该文件,把它拷进去即可。

2 标记图像目标区域

       因为做的是目标检测,所以接下来需要标记原始图像中的目标区域。相关方法和工具有很多,这里需用 labelImg,相关用法也有说明,基本就是框住目标区域然后双击类别,标记完整张图像后点击保存即可。操作界面如下:

通常save之后会将标记的信息保存在xml文件,其名字通常与对应的原始图像一样。最后生成的画风是这样的

其中每个xml文件是这样的画风
[html]  view plain  copy
  1. xml version="1.0" ?>  
  2. <annotation>  
  3.     <folder>JPEGImagesfolder>  
  4.     <filename>00000filename>  
  5.     <path>/home/kinglch/VOC2007/JPEGImages/00000.jpgpath>  
  6.     <source>  
  7.         <database>Unknowndatabase>  
  8.     source>  
  9.     <size>  
  10.         <width>704width>  
  11.         <height>576height>  
  12.         <depth>3depth>  
  13.     size>  
  14.     <segmented>0segmented>  
  15.     <object>  
  16.         <name>personname>  
  17.         <pose>Unspecifiedpose>  
  18.         <truncated>0truncated>  
  19.         <difficult>0difficult>  
  20.         <bndbox>  
  21.             <xmin>73xmin>  
  22.             <ymin>139ymin>  
  23.             <xmax>142xmax>  
  24.             <ymax>247ymax>  
  25.         bndbox>  
  26.     object>  
  27.     <object>  
  28.         <name>personname>  
  29.         <pose>Unspecifiedpose>  
  30.         <truncated>0truncated>  
  31.         <difficult>0difficult>  
  32.         <bndbox>  
  33.             <xmin>180xmin>  
  34.             <ymin>65ymin>  
  35.             <xmax>209xmax>  
  36.             <ymax>151ymax>  
  37.         bndbox>  
  38.     object>  
  39.     <object>  
  40.         <name>personname>  
  41.         <pose>Unspecifiedpose>  
  42.         <truncated>0truncated>  
  43.         <difficult>0difficult>  
  44.         <bndbox>  
  45.             <xmin>152xmin>  
  46.             <ymin>70ymin>  
  47.             <xmax>181xmax>  
  48.             <ymax>144ymax>  
  49.         bndbox>  
  50.     object>  
  51. annotation>  
注意filename中文件的文件名名没有后缀,因此需要统一加上后缀。只需一段命令即可
[plain]  view plain  copy
  1. find -name '*.xml' |xargs perl -pi -e 's||.jpg|g'  
有时候在Windows下用该工具label图像,可能会出现size那里的width和height都为0,如果在label之前已经归一化了图像大小那么就可以用下面两行命令来修改这个0值
同理修改宽:
[plain]  view plain  copy
  1. find -name '*.xml' |xargs perl -pi -e 's|0|448|g'  
同理修改高:
[plain]  view plain  copy
  1. find -name '*.xml' |xargs perl -pi -e 's|0|448|g'  
在对应目录下执行即可,这样就可以把后缀添上。这样就做按照VOC做好了我们的数据集,接下来就是放到算法中去训练跑起来。

3 用YOLOv2训练

1).生成相关文件

    按darknet的说明编译好后,接下来在darknet-master/scripts文件夹中新建文件夹VOCdevkit,然后将整个VOC2007文件夹都拷到VOCdevkit文件夹下。
    然后,需要利用scripts文件夹中的voc_label.py文件生成一系列训练文件和label,具体操作如下:
    首先需要修改voc_label.py中的代码,这里主要修改数据集名,以及类别信息,我的是VOC2007,并且所有样本用来训练,没有val或test,并且只检测人,故只有一类 目标,因此按如下设置
import xml.etree.ElementTree as ET  
import pickle  
import os  
from os import listdir, getcwd  
from os.path import join  
  
#sets=[('2012', 'train'), ('2012', 'val'), ('2007', 'train'), ('2007', 'val'), ('2007', 'test')]  
  
#classes = ["aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"]  
  
sets=[('2007', 'train')]  
classes = [ "person"]  
  
  
def convert(size, box):  
    dw = 1./size[0]  
    dh = 1./size[1]  
    x = (box[0] + box[1])/2.0  
    y = (box[2] + box[3])/2.0  
    w = box[1] - box[0]  
    h = box[3] - box[2]  
    x = x*dw  
    w = w*dw  
    y = y*dh  
    h = h*dh  
    return (x,y,w,h)  
  
def convert_annotation(year, image_id):  
    in_file = open('VOCdevkit/VOC%s/Annotations/%s.xml'%(year, image_id))  #(如果使用的不是VOC而是自设置数据集名字,则这里需要修改)  
    out_file = open('VOCdevkit/VOC%s/labels/%s.txt'%(year, image_id), 'w')  #(同上)  
    tree=ET.parse(in_file)  
    root = tree.getroot()  
    size = root.find('size')  
    w = int(size.find('width').text)  
    h = int(size.find('height').text)  
  
    for obj in root.iter('object'):  
        difficult = obj.find('difficult').text  
        cls = obj.find('name').text  
        if cls not in classes or int(difficult) == 1:  
            continue  
        cls_id = classes.index(cls)  
        xmlbox = obj.find('bndbox')  
        b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text), float(xmlbox.find('ymax').text))  
        bb = convert((w,h), b)  
        out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')  
  
wd = getcwd()  
  
for year, image_set in sets:  
    if not os.path.exists('VOCdevkit/VOC%s/labels/'%(year)):  
        os.makedirs('VOCdevkit/VOC%s/labels/'%(year))  
    image_ids = open('VOCdevkit/VOC%s/ImageSets/Main/%s.txt'%(year, image_set)).read().strip().split()  
    list_file = open('%s_%s.txt'%(year, image_set), 'w')  
    for image_id in image_ids:  
        list_file.write('%s/VOCdevkit/VOC%s/JPEGImages/%s.jpg\n'%(wd, year, image_id))  
        convert_annotation(year, image_id)  
    list_file.close()

修改好后在该目录下运行命令:python voc_label.py,之后则在文件夹scripts\VOCdevkit\VOC2007下生成了文件夹lable,该文件夹下的画风是这样的

这里包含了类别和对应归一化后的位置(i guess,如有错请指正)。同时在scripts\下应该也生成了train_2007.txt这个文件,里面包含了所有训练样本的绝对路径。

2).配置文件修改

      做好了上述准备,就可以根据不同的网络设置(cfg文件)来训练了。在文件夹cfg中有很多cfg文件,应该跟caffe中的prototxt文件是一个意思。这里以tiny-yolo-voc.cfg为例,该网络是yolo-voc的简版,相对速度会快些。主要修改参数如下

[plain]  view plain  copy
  1. .  
  2. .  
  3. .  
  4. [convolutional]  
  5. size=1  
  6. stride=1  
  7. pad=1  
  8. filters=30  //修改最后一层卷积层核参数个数,计算公式是依旧自己数据的类别数filter=num×(classes + coords + 1)=5×(1+4+1)=30  
  9. activation=linear  
  10.   
  11. [region]  
  12. anchors = 1.08,1.19,  3.42,4.41,  6.63,11.38,  9.42,5.11,  16.62,10.52  
  13. bias_match=1  
  14. classes=1  //类别数,本例为1类  
  15. coords=4  
  16. num=5  
  17. softmax=1  
  18. jitter=.2  
  19. rescore=1  
  20.   
  21. object_scale=5  
  22. noobject_scale=1  
  23. class_scale=1  
  24. coord_scale=1  
  25.   
  26. absolute=1  
  27. thresh = .6  
  28. random=1  
另外也可根据需要修改learning_rate、max_batches等参数。这里歪个楼吐槽一下其他网络配置,一开始是想用tiny.cfg来训练的官网作者说它够小也够快,但是它的网络配置最后几层是这样的画风:

[html]  view plain  copy
  1. [convolutional]  
  2. filters=1000  
  3. size=1  
  4. stride=1  
  5. pad=1  
  6. activation=linear  
  7.   
  8. [avgpool]  
  9.   
  10. [softmax]  
  11. groups=1  
  12.   
  13. [cost]  
  14. type=sse  
这里没有类别数,完全不知道怎么修改,强行把最后一层卷积层卷积核个数修改又跑不通会出错,如有大神知道还望赐教。

     修改好了cfg文件之后,就需要修改两个文件,首先是data文件下的voc.names。打开voc.names文件可以看到有20类的名称,本例中只有一类,检测人,因此将原来所有内容清空,仅写上person并保存, 备注:若此处为多个类的训练,请同voc_label.py 中顺序一致

      接着需要修改cfg文件夹中的voc.data文件。也是按自己需求修改,我的修改之后是这样的画风:

[plain]  view plain  copy
  1. classes= 1  //类别数  
  2. train  = /home/kinglch/darknet-master/scripts/2007_train.txt  //训练样本的绝对路径文件,也就是上文2.1中最后生成的  
  3. //valid  = /home/pjreddie/data/voc/2007_test.txt  //本例未用到  
  4. names = data/voc.names  //上一步修改的voc.names文件  
  5. backup = /home/kinglch/darknet-master/results/  //指示训练后生成的权重放在哪  
修改后按原名保存最好,接下来就可以训练了。

ps:yolo v1中这些细节是直接在源代码的yolo.c中修改的,源代码如下

比如这里的类别,训练样本的路径文件和模型保存路径均在此指定,修改后从新编译。而yolov2似乎摈弃了这种做法,所以训练的命令也与v1版本的不一样。

3).运行训练and 测试

      上面完成了就可以命令训练了,可以在官网上找到一些预训练的模型作为参数初始值,也可以直接训练,训练命令为

./darknet detector train ./cfg/voc.data cfg/tiny-yolo-voc.cfg

   测试命令:

./darknet detector test cfg/voc.data cfg/tiny-yolo-voc.cfg result/yolo-voc_400.weights testImage/738780.jpg

     或者

./darknet detector test cfg/voc.data cfg/tiny-yolo-voc.cfg results/tiny-yolo-voc_final.weights 0000.jpg

转载于:https://www.cnblogs.com/siahekai/p/11000795.html

你可能感兴趣的:(c/c++,python,人工智能)