pandas

5.1Pandas介绍

学习目标

  • 目标
    • 了解什么是pandas
    • 了解Numpy与Pandas的不同
    • 知道使用pandas的优势

1 Pandas介绍

pandas_第1张图片

  • 2008年WesMcKinney开发出的库
  • 专门用于数据挖掘的开源python库
  • 以Numpy为基础,借力Numpy模块在计算方面性能高的优势
  • 基于matplotlib,能够简便的画图
  • 独特的数据结构

2 为什么使用Pandas

Numpy已经能够帮助我们处理数据,能够结合matplotlib解决部分数据展示等问题,那么pandas学习的目的在什么地方呢?

  • 增强图表可读性

    • 回忆我们在numpy当中创建学生成绩表样式:

    • 返回结果:

array([[92, 55, 78, 50, 50],
       [71, 76, 50, 48, 96],
       [45, 84, 78, 51, 68],
       [81, 91, 56, 54, 76],
       [86, 66, 77, 67, 95],
       [46, 86, 56, 61, 99],
       [46, 95, 44, 46, 56],
       [80, 50, 45, 65, 57],
       [41, 93, 90, 41, 97],
       [65, 83, 57, 57, 40]])

如果数据展示为这样,可读性就会更友好:

pandas_第2张图片

  • 便捷的数据处理能力

pandas_第3张图片

  • 读取文件方便
  • 封装了Matplotlib、Numpy的画图和计算

3 小结

  • pandas的优势【了解】
    • 开源
    • 增强图表可读性
    • 便捷的数据处理能力
    • 读取文件方便
    • 封装了Matplotlib、Numpy的画图和计算
    • 行索引axis=0, 列索引axis=1

5.2 Pandas数据结构

学习目标

  • 目标
    • 知道Pandas的Series结构
    • 掌握Pandas的Dataframe结构
    • 了解Pandas的MultiIndex与panel结构

Pandas中一共有三种数据结构,分别为:Series、DataFrame和MultiIndex(老版本中叫Panel )。

其中Series是一维数据结构,DataFrame是二维的表格型数据结构,MultiIndex是三维的数据结构。

1.Series

Series是一个类似于一维数组的数据结构,它能够保存任何类型的数据,比如整数、字符串、浮点数等,主要由一组数据和与之相关的索引两部分构成。

pandas_第4张图片

1.1 Series的创建

# 导入pandas
import pandas as pd

pd.Series(data=None, index=None, dtype=None)
  • 参数:
    • data:传入的数据,可以是ndarray、list等
    • index:索引,必须是唯一的,且与数据的长度相等。如果没有传入索引参数,则默认会自动创建一个从0-N的整数索引。
    • dtype:数据的类型

通过已有数据创建

  • 指定内容,默认索引
pd.Series(np.arange(10))
# 运行结果
0    0
1    1
2    2
3    3
4    4
5    5
6    6
7    7
8    8
9    9
dtype: int64
  • 指定索引
pd.Series([6.7,5.6,3,10,2], index=[1,2,3,4,5])
# 运行结果
1     6.7
2     5.6
3     3.0
4    10.0
5     2.0
dtype: float64
  • 通过字典数据创建
color_count = pd.Series({'red':100, 'blue':200, 'green': 500, 'yellow':1000})
color_count
# 运行结果
blue       200
green      500
red        100
yellow    1000
dtype: int64

1.2 Series的属性

为了更方便地操作Series对象中的索引和数据,Series中提供了两个属性index和values

  • index
color_count.index

# 结果
Index(['blue', 'green', 'red', 'yellow'], dtype='object')
  • values
color_count.values

# 结果
array([ 200,  500,  100, 1000])
  • 也可以使用索引来获取数据:
color_count[2]


# 结果
100

2.DataFrame

DataFrame是一个类似于二维数组或表格(如excel)的对象,既有行索引,又有列索引

  • 行索引,表明不同行,横向索引,叫index,0轴,axis=0
  • 列索引,表名不同列,纵向索引,叫columns,1轴,axis=1

pandas_第5张图片

2.1 DataFrame的创建

# 导入pandas
import pandas as pd

pd.DataFrame(data=None, index=None, columns=None)
  • 参数:

    • index:行标签。如果没有传入索引参数,则默认会自动创建一个从0-N的整数索引。
    • columns:列标签。如果没有传入索引参数,则默认会自动创建一个从0-N的整数索引。
  • 通过已有数据创建

举例一:

pd.DataFrame(np.random.randn(2,3))

image-20190624084616637

回忆咱们在前面直接使用np创建的数组显示方式,比较两者的区别。

举例二:创建学生成绩表

# 生成10名同学,5门功课的数据
score = np.random.randint(40, 100, (10, 5))

# 结果
array([[92, 55, 78, 50, 50],
       [71, 76, 50, 48, 96],
       [45, 84, 78, 51, 68],
       [81, 91, 56, 54, 76],
       [86, 66, 77, 67, 95],
       [46, 86, 56, 61, 99],
       [46, 95, 44, 46, 56],
       [80, 50, 45, 65, 57],
       [41, 93, 90, 41, 97],
       [65, 83, 57, 57, 40]])

但是这样的数据形式很难看到存储的是什么的样的数据,可读性比较差!!

问题:如何让数据更有意义的显示?

# 使用Pandas中的数据结构
score_df = pd.DataFrame(score)

pandas_第6张图片

给分数数据增加行列索引,显示效果更佳

效果:

pandas_第7张图片

  • 增加行、列索引
# 构造行索引序列
subjects = ["语文", "数学", "英语", "政治", "体育"]

# 构造列索引序列
stu = ['同学' + str(i) for i in range(score_df.shape[0])]

# 添加行索引
data = pd.DataFrame(score, columns=subjects, index=stu)

2.2 DataFrame的属性

  • shape
data.shape

# 结果
(10, 5)
  • index
    DataFrame的行索引列表
data.index

# 结果
Index(['同学0', '同学1', '同学2', '同学3', '同学4', '同学5', '同学6', '同学7', '同学8', '同学9'], dtype='object')
  • columns
    DataFrame的列索引列表
data.columns

# 结果
Index(['语文', '数学', '英语', '政治', '体育'], dtype='object')

  • values

直接获取其中array的值
这是一个ndarray的对象

data.values

array([[92, 55, 78, 50, 50],
       [71, 76, 50, 48, 96],
       [45, 84, 78, 51, 68],
       [81, 91, 56, 54, 76],
       [86, 66, 77, 67, 95],
       [46, 86, 56, 61, 99],
       [46, 95, 44, 46, 56],
       [80, 50, 45, 65, 57],
       [41, 93, 90, 41, 97],
       [65, 83, 57, 57, 40]])
  • T
    转置
data.T

结果

pandas_第8张图片

  • **head(5):**显示前5行内容
    如果不补充参数,默认5行。填入参数N则显示前N行
data.head(5)

pandas_第9张图片

  • **tail(5)*显示后5行内容
    如果不补充参数,默认5行。填入参数N则显示后N行
data.tail(5)

2.3 DatatFrame索引的设置

需求:

pandas_第10张图片

2.3.1 修改行列索引值

stu = ["学生_" + str(i) for i in range(score_df.shape[0])]

# 必须整体全部修改
data.index = stu

注意:以下修改方式是错误的

# 错误修改方式
data.index[3] = '学生_3'

2.3.2 重设索引

  • reset_index(drop=False)
    • 设置新的下标索引
    • drop:默认为False,不删除原来索引,如果为True,删除原来的索引值
# 重置索引,drop=False
data.reset_index()

pandas_第11张图片

# 重置索引,drop=True
data.reset_index(drop=True)

2.3.3 以某列值设置为新的索引

  • set_index(keys, drop=True)
    • keys : 列索引名成或者列索引名称的列表
    • drop : boolean, default True.当做新的索引,删除原来的列
      设置新索引案例

1、创建

df = pd.DataFrame({'month': [1, 4, 7, 10],
                    'year': [2012, 2014, 2013, 2014],
                    'sale':[55, 40, 84, 31]})

   month  sale  year
0  1      55    2012
1  4      40    2014
2  7      84    2013
3  10     31    2014

2、以月份设置新的索引

df.set_index('month')
       sale  year
month
1      55    2012
4      40    2014
7      84    2013
10     31    2014

3、设置多个索引,以年和月份

df = df.set_index(['year', 'month'])
df
            sale
year  month
2012  1     55
2014  4     40
2013  7     84
2014  10    31
注:通过刚才的设置,这样DataFrame就变成了一个
具有MultiIndex的DataFrame。

3.MultiIndex与Panel

3.1 MultiIndex

MultiIndex是三维的数据结构;

多级索引(也称层次化索引)是pandas的重要功能,可以在Series、DataFrame对象上拥有2个以及2个以上的索引。

3.1.1 multiIndex的特性

打印刚才的df的行索引结果

df.index

MultiIndex(levels=[[2012, 2013, 2014], [1, 4, 7, 10]],
           labels=[[0, 2, 1, 2], [0, 1, 2, 3]],
           names=['year', 'month'])

多级或分层索引对象。

  • index属性
    • names:levels的名称
    • levels:每个level的元组值
df.index.names
# FrozenList(['year', 'month'])

df.index.levels
# FrozenList([[1, 2], [1, 4, 7, 10]])

3.1.2 multiIndex的创建

arrays = [[1, 1, 2, 2], ['red', 'blue', 'red', 'blue']]
pd.MultiIndex.from_arrays(arrays, names=('number', 'color'))

# 结果
MultiIndex(levels=[[1, 2], ['blue', 'red']],
           codes=[[0, 0, 1, 1], [1, 0, 1, 0]],
           names=['number', 'color'])

3.2 Panel(了解)

3.2.1 panel的创建

  • class pandas.Panel(data=None, items=None, major_axis=None, minor_axis=None)

    • 作用:存储3维数组的Panel结构

    • 参数:

      • data : ndarray或者dataframe

      • items : 索引或类似数组的对象,axis=0

      • major_axis : 索引或类似数组的对象,axis=1

      • minor_axis : 索引或类似数组的对象,axis=2

p = pd.Panel(data=np.arange(24).reshape(4,3,2),
                 items=list('ABCD'),
                 major_axis=pd.date_range('20130101', periods=3),
                 minor_axis=['first', 'second'])

# 结果
<class 'pandas.core.panel.Panel'>
Dimensions: 4 (items) x 3 (major_axis) x 2 (minor_axis)
Items axis: A to D
Major_axis axis: 2013-01-01 00:00:00 to 2013-01-03 00:00:00
Minor_axis axis: first to second

3.2.2 查看panel数据

p[:,:,"first"]
p["B",:,:]
注:Pandas从版本0.20.0开始弃用:推荐的用于表示3D数据的方法是通过DataFrame上的MultiIndex方法

4 小结

  • pandas的优势【了解】
    • 增强图表可读性
    • 便捷的数据处理能力
    • 读取文件方便
    • 封装了Matplotlib、Numpy的画图和计算
  • series【知道】
    • 创建
      • pd.Series([], index=[])
      • pd.Series({})
    • 属性
      • 对象.index
      • 对象.values
  • DataFrame【掌握】
    • 创建
      • pd.DataFrame(data=None, index=None, columns=None)
    • 属性
      • shape – 形状
      • index – 行索引
      • columns – 列索引
      • values – 查看值
      • T – 转置
      • head() – 查看头部内容
      • tail() – 查看尾部内容
    • DataFrame索引
      • 修改的时候,需要进行全局修改
      • 对象.reset_index()
      • 对象.set_index(keys)
      • 设置两个索引的时候就是multiindex 的DataFrame
  • MultiIndex与Panel【了解】
    • multiIndex:
      • 类似ndarray中的三维数组
      • 创建:
        • pd.MultiIndex.from_arrays()
      • 属性:
        • 对象.index
    • panel:
      • pd.Panel(data, items, major_axis, minor_axis)
      • panel数据要是想看到,则需要进行索引到dataframe或者series才可以

5.3 基本数据操作

学习目标

  • 目标
    • 记忆DataFrame的形状、行列索引名称获取等基本属性
    • 应用Series和DataFrame的索引进行切片获取
    • 应用sort_index和sort_values实现索引和值的排序
      为了更好的理解这些基本操作,我们将读取一个真实的股票数据。关于文件操作,后面在介绍,这里只先用一下API
# 读取文件
data = pd.read_csv("./data/stock_day.csv")

# 删除一些列,让数据更简单些,再去做后面的操作
data = data.drop(["ma5","ma10","ma20","v_ma5","v_ma10","v_ma20"], axis=1)

stockday

1 索引操作

Numpy当中我们已经讲过使用索引选取序列和切片选择,pandas也支持类似的操作,也可以直接使用列名、行名

称,甚至组合使用。

1.1 直接使用行列索引(先列后行)

获取’2018-02-27’这天的’close’的结果

# 直接使用行列索引名字的方式(先列后行)
data['open']['2018-02-27']
23.53

# 不支持的操作
# 错误
data['2018-02-27']['open']
# 错误
data[:1, :2]

1.2 结合loc或者iloc使用索引

获取从’2018-02-27’:‘2018-02-22’,'open’的结果

# 使用loc:只能指定行列索引的名字
data.loc['2018-02-27':'2018-02-22', 'open']

2018-02-27    23.53
2018-02-26    22.80
2018-02-23    22.88
Name: open, dtype: float64

# 使用iloc可以通过索引的下标去获取
# 获取前3天数据,前5列的结果
data.iloc[:3, :5]

            open    high    close    low
2018-02-27    23.53    25.88    24.16    23.53
2018-02-26    22.80    23.78    23.53    22.80
2018-02-23    22.88    23.37    22.82    22.71

1.3 使用ix组合索引

Warning:Starting in 0.20.0, the .ix indexer is deprecated, in favor of the more strict .iloc and .loc indexers.

获取行第1天到第4天,[‘open’, ‘close’, ‘high’, ‘low’]这个四个指标的结果

# 使用ix进行下表和名称组合做引
data.ix[0:4, ['open', 'close', 'high', 'low']]

# 推荐使用loc和iloc来获取的方式
data.loc[data.index[0:4], ['open', 'close', 'high', 'low']]
data.iloc[0:4, data.columns.get_indexer(['open', 'close', 'high', 'low'])]

            open    close    high    low
2018-02-27    23.53    24.16    25.88    23.53
2018-02-26    22.80    23.53    23.78    22.80
2018-02-23    22.88    22.82    23.37    22.71
2018-02-22    22.25    22.28    22.76    22.02

2 赋值操作

对DataFrame当中的close列进行重新赋值为1

# 直接修改原来的值
data['close'] = 1
# 或者
data.close = 1

3 排序

排序有两种形式,一种对于索引进行排序,一种对于内容进行排序

3.1 DataFrame排序

  • 使用df.sort_values(by=, ascending=)
    • 单个键或者多个键进行排序,
    • 参数:
      • by:指定排序参考的键
      • ascending:默认升序
        • ascending=False:降序
        • ascending=True:升序
# 按照开盘价大小进行排序 , 使用ascending指定按照大小排序
data.sort_values(by="open", ascending=True).head()

pandas_第12张图片

# 按照多个键进行排序
data.sort_values(by=['open', 'high'])

pandas_第13张图片

  • 使用df.sort_index给索引进行排序

这个股票的日期索引原来是从大到小,现在重新排序,从小到大

# 对索引进行排序
data.sort_index()

pandas_第14张图片

3.2 Series排序

  • 使用series.sort_values(ascending=True)进行排序
    series排序时,只有一列,不需要参数
data['p_change'].sort_values(ascending=True).head()

2015-09-01   -10.03
2015-09-14   -10.02
2016-01-11   -10.02
2015-07-15   -10.02
2015-08-26   -10.01
Name: p_change, dtype: float64
  • 使用series.sort_index()进行排序

与df一致

# 对索引进行排序
data['p_change'].sort_index().head()

2015-03-02    2.62
2015-03-03    1.44
2015-03-04    1.57
2015-03-05    2.02
2015-03-06    8.51
Name: p_change, dtype: float64

4 总结

  • 1.索引【掌握】
    • 直接索引 – 先列后行,是需要通过索引的字符串进行获取
    • loc – 先行后列,是需要通过索引的字符串进行获取
    • iloc – 先行后列,是通过下标进行索引
    • ix – 先行后列, 可以用上面两种方法混合进行索引
  • 2.赋值【知道】
    • data[“”] = **
    • data. =
  • 3.排序【知道】
    • dataframe
      • 对象.sort_values()
      • 对象.sort_index()
  • series
    - 对象.sort_values()
    - 对象.sort_index()

5.4 DataFrame运算

学习目标

  • 目标
    • 应用add等实现数据间的加、减法运算
    • 应用逻辑运算符号实现数据的逻辑筛选
    • 应用isin, query实现数据的筛选
    • 使用describe完成综合统计
    • 使用max, min, mean, std完成统计计算
    • 使用idxmin、idxmax完成最大值最小值的索引
    • 使用cumsum等实现累计分析
    • 应用apply函数实现数据的自定义处理

1 算术运算

  • add(other)

比如进行数学运算加上具体的一个数字

data['open'].add(1)

2018-02-27    24.53
2018-02-26    23.80
2018-02-23    23.88
2018-02-22    23.25
2018-02-14    22.49
  • sub(other)’

2 逻辑运算

2.1 逻辑运算符号

  • 例如筛选data[“open”] > 23的日期数据
    • data[“open”] > 23返回逻辑结果
data["open"] > 23

2018-02-27     True
2018-02-26    False
2018-02-23    False
2018-02-22    False
2018-02-14    False
# 逻辑判断的结果可以作为筛选的依据
data[data["open"] > 23].head()

pandas_第15张图片

  • 完成多个逻辑判断,
data[(data["open"] > 23) & (data["open"] < 24)].head()

pandas_第16张图片

2.2 逻辑运算函数

  • query(expr)
    • expr:查询字符串

通过query使得刚才的过程更加方便简单

data.query("open<24 & open>23").head()

  • isin(values)
    例如判断’open’是否为23.53和23.85
# 可以指定值进行一个判断,从而进行筛选操作
data[data["open"].isin([23.53, 23.85])]

pandas_第17张图片

3 统计运算

3.1 describe

综合分析: 能够直接得出很多统计结果,count, mean, std, min, max 等

# 计算平均值、标准差、最大值、最小值
data.describe()

describe结果

3.2 统计函数

Numpy当中已经详细介绍,在这里我们演示min(最小值), max(最大值), mean(平均值), median(中位数), var(方差), std(标准差),mode(众数)结果:

pandas_第18张图片

对于单个函数去进行统计的时候,坐标轴还是按照默认列“columns” (axis=0, default),如果要对行“index” 需要指定(axis=1)

mode 众数

  • max()、min()
# 使用统计函数:0 代表列求结果, 1 代表行求统计结果
data.max(0)

open                   34.99
high                   36.35
close                  35.21
low                    34.01
volume             501915.41
price_change            3.03
p_change               10.03
turnover               12.56
my_price_change         3.41
dtype: float64
  • std()、var()
# 方差
data.var(0)

open               1.545255e+01
high               1.662665e+01
close              1.554572e+01
low                1.437902e+01
volume             5.458124e+09
price_change       8.072595e-01
p_change           1.664394e+01
turnover           4.323800e+00
my_price_change    6.409037e-01
dtype: float64

# 标准差
data.std(0)

open                   3.930973
high                   4.077578
close                  3.942806
low                    3.791968
volume             73879.119354
price_change           0.898476
p_change               4.079698
turnover               2.079375
my_price_change        0.800565
dtype: float64
  • median():中位数

中位数为将数据从小到大排列,在最中间的那个数为中位数。如果没有中间数,取中间两个数的平均值。

df = pd.DataFrame({'COL1' : [2,3,4,5,4,2],
                   'COL2' : [0,1,2,3,4,2]})

df.median()

COL1    3.5
COL2    2.0
dtype: float64
  • idxmax()、idxmin()
# 求出最大值的位置
data.idxmax(axis=0)

open               2015-06-15
high               2015-06-10
close              2015-06-12
low                2015-06-12
volume             2017-10-26
price_change       2015-06-09
p_change           2015-08-28
turnover           2017-10-26
my_price_change    2015-07-10
dtype: object


# 求出最小值的位置
data.idxmin(axis=0)

open               2015-03-02
high               2015-03-02
close              2015-09-02
low                2015-03-02
volume             2016-07-06
price_change       2015-06-15
p_change           2015-09-01
turnover           2016-07-06
my_price_change    2015-06-15
dtype: object

3.3 累计统计函数

pandas_第19张图片

那么这些累计统计函数怎么用?

cumsum1

以上这些函数可以对series和dataframe操作

这里我们按照时间的从前往后来进行累计

  • 排序
# 排序之后,进行累计求和
data = data.sort_index()
  • 对p_change进行求和
stock_rise = data['p_change']
# plot方法集成了前面直方图、条形图、饼图、折线图
stock_rise.cumsum()

2015-03-02      2.62
2015-03-03      4.06
2015-03-04      5.63
2015-03-05      7.65
2015-03-06     16.16
2015-03-09     16.37
2015-03-10     18.75
2015-03-11     16.36
2015-03-12     15.03
2015-03-13     17.58
2015-03-16     20.34
2015-03-17     22.42
2015-03-18     23.28
2015-03-19     23.74
2015-03-20     23.48
2015-03-23     23.74

那么如何让这个连续求和的结果更好的显示呢?

cumsum

如果要使用plot函数,需要导入matplotlib.

import matplotlib.pyplot as plt
# plot显示图形
stock_rise.cumsum().plot()
# 需要调用show,才能显示出结果
plt.show()
关于plot,稍后会介绍API的选择

4 自定义运算

  • apply(func, axis=0)
    • func:自定义函数
    • axis=0:默认是列,axis=1为行进行运算
  • 定义一个对列,最大值-最小值的函数
# 这里可以拿到两个dataframe
data[['open', 'close']].apply(lambda x: x.max() - x.min(), axis=0)

open     22.74
close    22.85
dtype: float64

5 小结

  • 算术运算【知道】
  • 逻辑运算【知道】
    • 1.逻辑运算符号
    • 2.逻辑运算函数
      • 对象.query()
      • 对象.isin()
  • 统计运算【知道】
    • 1.对象.describe()
    • 2.统计函数
    • 3.累积统计函数
  • 自定义运算【知道】
    • apply(func, axis=0)

5.5 Pandas画图

学习目标

  • 目标
    • 了解DataFrame的画图函数
    • 了解Series的画图函数

1 pandas.DataFrame.plot

  • DataFrame.plot(kind=‘line’)
  • kind : str,需要绘制图形的种类
    • ‘line’ : line plot (default)
    • ‘bar’ : vertical bar plot
    • ‘barh’ : horizontal bar plot
      • 关于“barh”的解释:
      • http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.plot.barh.html
    • ‘hist’ : histogram
    • ‘pie’ : pie plot
    • ‘scatter’ : scatter plot
      更多细节:https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.plot.html?highlight=plot#pandas.DataFrame.plot

2 pandas.Series.plot

更多细节:https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.plot.html?highlight=plot#pandas.Series.plot

5.6 文件读取与存储

学习目标

  • 目标
    • 了解Pandas的几种文件读取存储操作
    • 应用CSV方式、HDF方式和json方式实现文件的读取和存储

我们的数据大部分存在于文件当中,所以pandas会支持复杂的IO操作,pandas的API支持众多的文件格式,如CSV、SQL、XLS、JSON、HDF5。

注:最常用的HDF5和CSV文件

pandas_第20张图片

1 CSV

1.1 read_csv

  • pandas.read_csv(filepath_or_buffer, sep =‘,’, usecols )

    • filepath_or_buffer:文件路径
    • sep :分隔符,默认用","隔开
    • usecols:指定读取的列名,列表形式
  • 举例:读取之前的股票的数据

# 读取文件,并且指定只获取'open', 'close'指标
data = pd.read_csv("./data/stock_day.csv", usecols=['open', 'close'])

            open    close
2018-02-27    23.53    24.16
2018-02-26    22.80    23.53
2018-02-23    22.88    22.82
2018-02-22    22.25    22.28
2018-02-14    21.49    21.92

1.2 to_csv

  • DataFrame.to_csv(path_or_buf=None, sep=', ’, columns=None, header=True, index=True, mode=‘w’, encoding=None)

    • path_or_buf :文件路径
    • sep :分隔符,默认用","隔开
    • columns :选择需要的列索引
    • header :boolean or list of string, default True,是否写进列索引值
    • index:是否写进行索引
    • mode:‘w’:重写, ‘a’ 追加
  • 举例:保存读取出来的股票数据

    • 保存’open’列的数据,然后读取查看结果
# 选取10行数据保存,便于观察数据
data[:10].to_csv("./data/test.csv", columns=['open'])
# 读取,查看结果
pd.read_csv("./data/test.csv")

     Unnamed: 0    open
0    2018-02-27    23.53
1    2018-02-26    22.80
2    2018-02-23    22.88
3    2018-02-22    22.25
4    2018-02-14    21.49
5    2018-02-13    21.40
6    2018-02-12    20.70
7    2018-02-09    21.20
8    2018-02-08    21.79
9    2018-02-07    22.69

会发现将索引存入到文件当中,变成单独的一列数据。如果需要删除,可以指定index参数,删除原来的文件,重新保存一次。

# index:存储不会讲索引值变成一列数据
data[:10].to_csv("./data/test.csv", columns=['open'], index=False)

2 HDF5

2.1 read_hdf与to_hdf

HDF5文件的读取和存储需要指定一个键,值为要存储的DataFrame

  • pandas.read_hdf(path_or_buf,key =None,** kwargs)
    从h5文件当中读取数据

    • path_or_buffer:文件路径
    • key:读取的键
    • return:Theselected object
  • DataFrame.to_hdf(path_or_buf, key, \kwargs)

2.2 案例

  • 读取文件
day_close = pd.read_hdf("./data/day_close.h5")

如果读取的时候出现以下错误

pandas_第21张图片

需要安装安装tables模块避免不能读取HDF5文件

pip install tables

pandas_第22张图片

  • 存储文件
day_close.to_hdf("./data/test.h5", key="day_close")

再次读取的时候, 需要指定键的名字
写的时候应该保存为h5的后缀

new_close = pd.read_hdf("./data/test.h5", key="day_close")

注意:优先选择使用HDF5文件存储

  • HDF5在存储的时候支持压缩使用的方式是blosc,这个是速度最快的也是pandas默认支持的
  • 使用压缩可以提磁盘利用率,节省空间
  • HDF5还是跨平台的,可以轻松迁移到hadoop 上面

3 JSON

JSON是我们常用的一种数据交换格式,前面在前后端的交互经常用到,也会在存储的时候选择这种格式。所以我们需要知道Pandas如何进行读取和存储JSON格式。

3.1 read_json

  • pandas.read_json(path_or_buf=None, orient=None, typ=‘frame’, lines=False)

    • 将JSON格式准换成默认的Pandas DataFrame格式
    • orient : string,Indication of expected JSON string format.
      • ‘split’ : dict like {index -> [index], columns -> [columns], data -> [values]}
        • split 将索引总结到索引,列名到列名,数据到数据。将三部分都分开了
      • ‘records’ : list like [{column -> value}, … , {column -> value}]
        • records 以columns:values的形式输出
      • ‘index’ : dict like {index -> {column -> value}}
        • index 以index:{columns:values}…的形式输出
      • ‘columns’ : dict like {column -> {index -> value}},默认该格式
        • colums 以columns:{index:values}的形式输出
      • ‘values’ : just the values array
        • values 直接输出值
    • lines : boolean, default False
      • 按照每行读取json对象
    • typ : default ‘frame’, 指定转换成的对象类型series或者dataframe

3.2 read_josn 案例

  • 数据介绍

这里使用一个新闻标题讽刺数据集,格式为json。is_sarcastic:1讽刺的,否则为0;headline:新闻报道的标题;article_link:链接到原始新闻文章。存储格式为:

{"article_link": "https://www.huffingtonpost.com/entry/versace-black-code_us_5861fbefe4b0de3a08f600d5", "headline": "former versace store clerk sues over secret 'black code' for minority shoppers", "is_sarcastic": 0}
{"article_link": "https://www.huffingtonpost.com/entry/roseanne-revival-review_us_5ab3a497e4b054d118e04365", "headline": "the 'roseanne' revival catches up to our thorny political mood, for better and worse", "is_sarcastic": 0}
  • 读取
    orient指定存储的json格式,lines指定按照行去变成一个样本
json_read = pd.read_json("./data/Sarcasm_Headlines_Dataset.json", orient="records", lines=True)

结果为:
pandas_第23张图片

3.3 to_json

  • DataFrame.to_json(path_or_buf=None, orient=None, lines=False)
    • 将Pandas 对象存储为json格式
    • path_or_buf=None:文件地址
    • orient:存储的json形式,{‘split’,’records’,’index’,’columns’,’values’}
    • lines:一个对象存储为一行

3.4 案例

  • 存储文件
json_read.to_json("./data/test.json", orient='records')

结果

[{"article_link":"https:\/\/www.huffingtonpost.com\/entry\/versace-black-code_us_5861fbefe4b0de3a08f600d5","headline":"former versace store clerk sues over secret 'black code' for minority shoppers","is_sarcastic":0},{"article_link":"https:\/\/www.huffingtonpost.com\/entry\/roseanne-revival-review_us_5ab3a497e4b054d118e04365","headline":"the 'roseanne' revival catches up to our thorny political mood, for better and worse","is_sarcastic":0},{"article_link":"https:\/\/local.theonion.com\/mom-starting-to-fear-son-s-web-series-closest-thing-she-1819576697","headline":"mom starting to fear son's web series closest thing she will have to grandchild","is_sarcastic":1},{"article_link":"https:\/\/politics.theonion.com\/boehner-just-wants-wife-to-listen-not-come-up-with-alt-1819574302","headline":"boehner just wants wife to listen, not come up with alternative debt-reduction ideas","is_sarcastic":1},{"article_link":"https:\/\/www.huffingtonpost.com\/entry\/jk-rowling-wishes-snape-happy-birthday_us_569117c4e4b0cad15e64fdcb","headline":"j.k. rowling wishes snape happy birthday in the most magical way","is_sarcastic":0},{"article_link":"https:\/\/www.huffingtonpost.com\/entry\/advancing-the-worlds-women_b_6810038.html","headline":"advancing the world's women","is_sarcastic":0},....]

  • 修改lines参数为True
json_read.to_json("./data/test.json", orient='records', lines=True)

结果

{"article_link":"https:\/\/www.huffingtonpost.com\/entry\/versace-black-code_us_5861fbefe4b0de3a08f600d5","headline":"former versace store clerk sues over secret 'black code' for minority shoppers","is_sarcastic":0}
{"article_link":"https:\/\/www.huffingtonpost.com\/entry\/roseanne-revival-review_us_5ab3a497e4b054d118e04365","headline":"the 'roseanne' revival catches up to our thorny political mood, for better and worse","is_sarcastic":0}
{"article_link":"https:\/\/local.theonion.com\/mom-starting-to-fear-son-s-web-series-closest-thing-she-1819576697","headline":"mom starting to fear son's web series closest thing she will have to grandchild","is_sarcastic":1}
{"article_link":"https:\/\/politics.theonion.com\/boehner-just-wants-wife-to-listen-not-come-up-with-alt-1819574302","headline":"boehner just wants wife to listen, not come up with alternative debt-reduction ideas","is_sarcastic":1}
{"article_link":"https:\/\/www.huffingtonpost.com\/entry\/jk-rowling-wishes-snape-happy-birthday_us_569117c4e4b0cad15e64fdcb","headline":"j.k. rowling wishes snape happy birthday in the most magical way","is_sarcastic":0}...

4 小结

  • pandas的CSV、HDF5、JSON文件的读取【知道】
    • 对象.read_**()
    • 对象.to_**()

5.7 高级处理-缺失值处理(重点)

学习目标

  • 目标
    • 应用isnull判断是否有缺失数据NaN
    • 应用fillna实现缺失值的填充
    • 应用dropna实现缺失值的删除
    • 应用replace实现数据的替换
      pandas_第24张图片
      np.NaN 是float 类型

1 如何处理nan

  • 获取缺失值的标记方式(NaN或者其他标记方式)

  • 如果缺失值的标记方式是NaN

    • 判断数据中是否包含NaN:

      • pd.isnull(df),
      • pd.notnull(df)
    • 存在缺失值nan:

      • 1、删除存在缺失值的:dropna(axis=‘rows’)

        • 注:不会修改原数据,需要接受返回值
      • 2、替换缺失值:fillna(value, inplace=True)

        • value:替换成的值
        • inplace:True:会修改原数据,False:不替换修改原数据,生成新的对象
  • 如果缺失值没有使用NaN标记,比如使用"?"

    • 先替换‘?’为np.nan,然后继续处理

2 电影数据的缺失值处理

  • 电影数据文件获取
# 读取电影数据
movie = pd.read_csv("./data/IMDB-Movie-Data.csv")

pandas_第25张图片

2.1 判断缺失值是否存在

  • pd.notnull()
pd.notnull(movie)
Rank    Title    Genre    Description    Director    Actors    Year    Runtime (Minutes)    Rating    Votes    Revenue (Millions)    Metascore
0    True    True    True    True    True    True    True    True    True    True    True    True
1    True    True    True    True    True    True    True    True    True    True    True    True
2    True    True    True    True    True    True    True    True    True    True    True    True
3    True    True    True    True    True    True    True    True    True    True    True    True
4    True    True    True    True    True    True    True    True    True    True    True    True
5    True    True    True    True    True    True    True    True    True    True    True    True
6    True    True    True    True    True    True    True    True    True    True    True    True
7    True    True    True    True    True    True    True    True    True    True    False    True

整个df数据有一个为true,最终结果就为true

np.all(pd.notnull(movie))
  • pd.isnull()

2.2 存在缺失值nan,并且是np.nan

  • 1、删除

pandas删除缺失值,使用dropna的前提是,缺失值的类型必须是np.nan

# 不修改原数据
movie.dropna()

# 可以定义新的变量接受或者用原来的变量名
data = movie.dropna()
  • 2、替换缺失值
# 替换存在缺失值的样本的两列
# 替换填充平均值,中位数
# movie['Revenue (Millions)'].fillna(movie['Revenue (Millions)'].mean(), inplace=True)

替换所有缺失值:

for i in movie.columns:
    if np.all(pd.notnull(movie[i])) == False:
        print(i)
        movie[i].fillna(movie[i].mean(), inplace=True)

2.3 不是缺失值nan,有默认标记的

数据是这样的:

pandas_第26张图片

wis = pd.read_csv("https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/breast-cancer-wisconsin.data")

以上数据在读取时,可能会报如下错误:

URLError: <urlopen error [SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed (_ssl.c:833)>

解决办法:

# 全局取消证书验证
import ssl
ssl._create_default_https_context = ssl._create_unverified_context

处理思路分析:

  • 1、先替换‘?’为np.nan
    • df.replace(to_replace=, value=)
      • to_replace:替换前的值
      • value:替换后的值
# 把一些其它值标记的缺失值,替换成np.nan
wis = wis.replace(to_replace='?', value=np.nan)
  • 2、在进行缺失值的处理
# 删除
wis = wis.dropna()

3 小结

  • isnull、notnull判断是否存在缺失值【知道】
    • np.any(pd.isnull(movie)) # 里面如果有一个缺失值,就返回True
    • np.all(pd.notnull(movie)) # 里面如果有一个缺失值,就返回False
  • dropna删除np.nan标记的缺失值【知道】
    • movie.dropna()
  • fillna填充缺失值【知道】
    • movie[i].fillna(value=movie[i].mean(), inplace=True)
  • replace替换具体某些值【知道】
    • wis.replace(to_replace=“?”, value=np.NaN)

5.8 高级处理-数据离散化(重点)

学习目标

  • 目标
    • 应用cut、qcut实现数据的区间分组
    • 应用get_dummies实现数据的one-hot编码

1 为什么要离散化

连续属性离散化的目的是为了简化数据结构,数据**离散化技术可以用来减少给定连续属性值的个数。**离散化方法经常作为数据挖掘的工具。

2 什么是数据的离散化

连续属性的离散化就是在连续属性的值域上,将值域划分为若干个离散的区间,最后用不同的符号或整数 值代表落在每个子区间中的属性值。

离散化有很多种方法,这使用一种最简单的方式去操作

  • 原始人的身高数据:165,174,160,180,159,163,192,184
  • 假设按照身高分几个区间段:150~165, 165180,180195

这样我们将数据分到了三个区间段,我可以对应的标记为矮、中、高三个类别,最终要处理成一个"哑变量"矩阵

3 股票的涨跌幅离散化

我们对股票每日的"p_change"进行离散化

哑变量矩阵

3.1 读取股票的数据

先读取股票的数据,筛选出p_change数据

data = pd.read_csv("./data/stock_day.csv")
p_change= data['p_change']

3.2 将股票涨跌幅数据进行分组

股票涨跌幅分组

使用的工具:

  • pd.qcut(data, q):
    • 对数据进行分组将数据分组,一般会与value_counts搭配使用,统计每组的个数
    • series.value_counts():统计分组次数
# 自行分组
qcut = pd.qcut(p_change, 10)
# 计算分到每个组数据个数
qcut.value_counts()

自定义区间分组:

  • pd.cut(data, bins)
# 自己指定分组区间
bins = [-100, -7, -5, -3, 0, 3, 5, 7, 100]
p_counts = pd.cut(p_change, bins)

3.3 股票涨跌幅分组数据变成one-hot编码

  • 什么是one-hot编码

把每个类别生成一个布尔列,这些列中只有一列可以为这个样本取值为1.其又被称为热编码。

把下图中左边的表格转化为使用右边形式进行表示:

image-20190316224151504

  • pandas.get_dummies(data, prefix=None)

    • data:array-like, Series, or DataFrame

    • prefix:分组名字

# 得出one-hot编码矩阵
dummies = pd.get_dummies(p_counts, prefix="rise")

哑变量矩阵

4 小结

  • 数据离散化【知道】
    • 可以用来减少给定连续属性值的个数
    • 在连续属性的值域上,将值域划分为若干个离散的区间,最后用不同的符号或整数值代表落在每个子区间中的属性值。
  • qcut、cut实现数据分组【知道】
    • qcut:大致分为相同的几组
    • cut:自定义分组区间
  • get_dummies实现哑变量矩阵【知道】

5.9 高级处理-合并

学习目标

  • 目标
    • 应用pd.concat实现数据的合并
    • 应用pd.merge实现数据的合并

如果你的数据由多张表组成,那么有时候需要将不同的内容合并在一起分析

1 pd.concat实现数据合并

  • pd.concat([data1, data2], axis=1)
    • 按照行或列进行合并,axis=0为列索引,axis=1为行索引

比如我们将刚才处理好的one-hot编码与原数据合并

pandas_第27张图片

# 按照行索引进行
pd.concat([data, dummies], axis=1)

2 pd.merge

  • pd.merge(left, right, how=‘inner’, on=None)
    • 可以指定按照两组数据的共同键值对合并或者左右各自
    • left: DataFrame
    • right: 另一个DataFrame
    • on: 指定的共同键
    • how:按照什么方式连接
      pandas_第28张图片

2.1 pd.merge合并

left = pd.DataFrame({'key1': ['K0', 'K0', 'K1', 'K2'],
                        'key2': ['K0', 'K1', 'K0', 'K1'],
                        'A': ['A0', 'A1', 'A2', 'A3'],
                        'B': ['B0', 'B1', 'B2', 'B3']})

right = pd.DataFrame({'key1': ['K0', 'K1', 'K1', 'K2'],
                        'key2': ['K0', 'K0', 'K0', 'K0'],
                        'C': ['C0', 'C1', 'C2', 'C3'],
                        'D': ['D0', 'D1', 'D2', 'D3']})

# 默认内连接
result = pd.merge(left, right, on=['key1', 'key2'])

pandas_第29张图片

  • 左连接
result = pd.merge(left, right, how='left', on=['key1', 'key2'])

pandas_第30张图片

  • 右连接
result = pd.merge(left, right, how='right', on=['key1', 'key2'])

pandas_第31张图片

  • 外链接
result = pd.merge(left, right, how='outer', on=['key1', 'key2'])

pandas_第32张图片

3 总结

  • pd.concat([数据1, 数据2], axis=**)【知道】
  • pd.merge(left, right, how=, on=)【知道】
    • how – 以何种方式连接
    • on – 连接的键的依据是哪几个

5.10 高级处理-交叉表与透视表

学习目标

  • 目标
    • 应用crosstab和pivot_table实现交叉表与透视表

1 交叉表与透视表什么作用

探究股票的涨跌与星期几有关?

以下图当中表示,week代表星期几,1,0代表这一天股票的涨跌幅是好还是坏,里面的数据代表比例

可以理解为所有时间为星期一等等的数据当中涨跌幅好坏的比例

pandas_第33张图片

pandas_第34张图片

  • 交叉表:交叉表用于计算一列数据对于另外一列数据的分组个数(用于统计分组频率的特殊透视表)
    • pd.crosstab(value1, value2)
  • 透视表:透视表是将原有的DataFrame的列分别作为行索引和列索引,然后对指定的列应用聚集函数
    • data.pivot_table()
  • DataFrame.pivot_table([], index=[])

2 案例分析

2.1 数据准备

  • 准备两列数据,星期数据以及涨跌幅是好是坏数据
  • 进行交叉表计算
# 寻找星期几跟股票张得的关系
# 1、先把对应的日期找到星期几
date = pd.to_datetime(data.index).weekday
data['week'] = date

# 2、假如把p_change按照大小去分个类0为界限
data['posi_neg'] = np.where(data['p_change'] > 0, 1, 0)

# 通过交叉表找寻两列数据的关系
count = pd.crosstab(data['week'], data['posi_neg'])

但是我们看到count只是每个星期日子的好坏天数,并没有得到比例,该怎么去做?

  • 对于每个星期一等的总天数求和,运用除法运算求出比例
# 算数运算,先求和
sum = count.sum(axis=1).astype(np.float32)

# 进行相除操作,得出比例
pro = count.div(sum, axis=0)

2.2 查看效果

使用plot画出这个比例,使用stacked的柱状图

pro.plot(kind='bar', stacked=True)
plt.show()

2.3 使用pivot_table(透视表)实现

使用透视表,刚才的过程更加简单

# 通过透视表,将整个过程变成更简单一些
data.pivot_table(['posi_neg'], index='week')

3 小结

  • 交叉表与透视表的作用【知道】
    • 交叉表:计算一列数据对于另外一列数据的分组个数
    • 透视表:指定某一列对另一列的关系

5.11 高级处理-分组与聚合

学习目标

  • 目标
    • 应用groupby和聚合函数实现数据的分组与聚合
      分组与聚合通常是分析数据的一种方式,通常与一些统计函数一起使用,查看数据的分组情况

想一想其实刚才的交叉表与透视表也有分组的功能,所以算是分组的一种形式,只不过他们主要是计算次数或者计算比例!!看其中的效果:

分组效果

1 什么分组与聚合

分组聚合原理

2 分组API

  • DataFrame.groupby(key, as_index=False)
    • key:分组的列数据,可以多个
  • 案例:不同颜色的不同笔的价格数据
col =pd.DataFrame({'color': ['white','red','green','red','green'], 'object': ['pen','pencil','pencil','ashtray','pen'],'price1':[5.56,4.20,1.30,0.56,2.75],'price2':[4.75,4.12,1.60,0.75,3.15]})

color    object    price1    price2
0    white    pen    5.56    4.75
1    red    pencil    4.20    4.12
2    green    pencil    1.30    1.60
3    red    ashtray    0.56    0.75
4    green    pen    2.75    3.15
  • 进行分组,对颜色分组,price进行聚合

分组,求平均值

col.groupby(['color'])['price1'].mean()
col['price1'].groupby(col['color']).mean()

color
green    2.025
red      2.380
white    5.560
Name: price1, dtype: float64

# 分组,数据的结构不变
col.groupby(['color'], as_index=False)['price1'].mean()

color    price1
0    green    2.025
1    red    2.380
2    white    5.560

3 星巴克零售店铺数据

现在我们有一组关于全球星巴克店铺的统计数据,如果我想知道美国的星巴克数量和中国的哪个多,或者我想知道中国每个省份星巴克的数量的情况,那么应该怎么办?

数据来源:https://www.kaggle.com/starbucks/store-locations/data

星巴克数据

3.1 数据获取

从文件中读取星巴克店铺数据

# 导入星巴克店的数据
starbucks = pd.read_csv("./data/starbucks/directory.csv")

3.2 进行分组聚合

# 按照国家分组,求出每个国家的星巴克零售店数量
count = starbucks.groupby(['Country']).count()

画图显示结果

count['Brand'].plot(kind='bar', figsize=(20, 8))
plt.show()

星巴克数量画图

假设我们加入省市一起进行分组

# 设置多个索引,set_index()
starbucks.groupby(['Country', 'State/Province']).count()

国家省市分组结果

仔细观察这个结构,与我们前面讲的哪个结构类似??

与前面的MultiIndex结构类似

4 小结

  • groupby进行数据的分组【知道】
    • pandas中,抛开聚合谈分组,无意义

5.12 案例

学习目标

  • 目标

1 需求

现在我们有一组从2006年到2016年1000部最流行的电影数据

数据来源:https://www.kaggle.com/damianpanek/sunday-eda/data

  • 问题1:我们想知道这些电影数据中评分的平均分,导演的人数等信息,我们应该怎么获取?
  • 问题2:对于这一组电影数据,如果我们想rating,runtime的分布情况,应该如何呈现数据?
  • 问题3:对于这一组电影数据,如果我们希望统计电影分类(genre)的情况,应该如何处理数据?

2 实现

首先获取导入包,获取数据

%matplotlib inline
import pandas  as pd 
import numpy as np
from matplotlib import pyplot as plt
#文件的路径
path = "./data/IMDB-Movie-Data.csv"
#读取文件
df = pd.read_csv(path)

2.1 问题一:

我们想知道这些电影数据中评分的平均分,导演的人数等信息,我们应该怎么获取?

  • 得出评分的平均分

使用mean函数

df["Rating"].mean()
  • 得出导演人数信息

求出唯一值,然后进行形状获取

## 导演的人数
# df["Director"].unique().shape[0]
np.unique(df["Director"]).shape[0]
644

2.2 问题二:

对于这一组电影数据,如果我们想Rating,Runtime (Minutes)的分布情况,应该如何呈现数据?

  • 直接呈现,以直方图的形式
    选择分数列数据,进行plot
df["Rating"].plot(kind='hist',figsize=(20,8))

pandas_第35张图片

  • Rating进行分布展示
    进行绘制直方图
plt.figure(figsize=(20,8),dpi=80)
plt.hist(df["Rating"].values,bins=20)
plt.show()

修改刻度的间隔

# 求出最大最小值
max_ = df["Rating"].max()
min_ = df["Rating"].min()

# 生成刻度列表
t1 = np.linspace(min_,max_,num=21)

# [ 1.9    2.255  2.61   2.965  3.32   3.675  4.03   4.385  4.74   5.095  5.45   5.805  6.16   6.515  6.87   7.225  7.58   7.935  8.29   8.645  9.   ]

# 修改刻度
plt.xticks(t1)

# 添加网格
plt.grid()

pandas_第36张图片

  • Runtime (Minutes)进行分布展示
    进行绘制直方图
plt.figure(figsize=(20,8),dpi=80)
plt.hist(df["Runtime (Minutes)"].values,bins=20)
plt.show()

修改间隔

# 求出最大最小值
max_ = df["Runtime (Minutes)"].max()
min_ = df["Runtime (Minutes)"].min()

# # 生成刻度列表
t1 = np.linspace(min_,max_,num=21)

# 修改刻度
plt.xticks(np.linspace(min_,max_,num=21))

# 添加网格
plt.grid()

pandas_第37张图片

2.3 问题三:

对于这一组电影数据,如果我们希望统计电影分类(genre)的情况,应该如何处理数据?

  • 思路分析
    • 思路
      • 1、创建一个全为0的dataframe,列索引置为电影的分类,temp_df
      • 2、遍历每一部电影,temp_df中把分类出现的列的值置为1
      • 3、求和
  • 1、创建一个全为0的dataframe,列索引置为电影的分类,temp_df
# 进行字符串分割
temp_list = [i.split(",") for i in df["Genre"]]
# 获取电影的分类
genre_list = np.unique([i for j in temp_list for i in j]) 

# 增加新的列
temp_df = pd.DataFrame(np.zeros([df.shape[0],genre_list.shape[0]]),columns=genre_list)
  • 2、遍历每一部电影,temp_df中把分类出现的列的值置为1
for i in range(1000):
    #temp_list[i] ['Action','Adventure','Animation']
    temp_df.ix[i,temp_list[i]]=1
print(temp_df.sum().sort_values())
  • 3、求和,绘图
temp_df.sum().sort_values(ascending=False).plot(kind="bar",figsize=(20,8),fontsize=20,colormap="cool")


Musical        5.0
Western        7.0
War           13.0
Music         16.0
Sport         18.0
History       29.0
Animation     49.0
Family        51.0
Biography     81.0
Fantasy      101.0
Mystery      106.0
Horror       119.0
Sci-Fi       120.0
Romance      141.0
Crime        150.0
Thriller     195.0
Adventure    259.0
Comedy       279.0
Action       303.0
Drama        513.0
dtype: float64

pandas_第38张图片

你可能感兴趣的:(pandas,python,数据分析)