- COCO数据集
是小果果蛋儿啊
机器学习算法计算机视觉人工智能深度学习
官网地址:http://cocodataset.org/#downloadCOCO是一个大规模的物体检测、分割和描述数据集。COCO具有以下特点:物体分割上下文识别超像素材质分割33万张图片(超过20万张有标注)150万个物体实例80个物体类别91个材质类别每张图片有5个描述25万人的关键点COCO数据集是一个多用途的计算机视觉数据集,它支持多种任务,包括但不限于:物体检测(ObjectDetec
- 2025年计算机视觉研究进展与应用国际学术会议 (ACVRA 2025)
GSRA会务组房老师
计算机视觉人工智能数据挖掘图像处理目标检测云计算语言模型
2025年计算机视觉研究进展与应用国际学术会议(ACVRA2025)2025InternationalConferenceonAdvancesinComputerVisionResearchandApplications重要信息2025年3月28-30日南京一轮截稿日期:2024年12月26日EI检索稳定早投稿,早审稿,早录用【会议简介】2025年计算机视觉研究进展与应用国际学术会议(ACVRA2
- 【学术投稿-2025年计算机视觉研究进展与应用国际学术会议 (ACVRA 2025)】CSS样式解析:行内、内部与外部样式的区别与优先级分析
禁默
前端学术会议css前端
简介2025年计算机视觉研究进展与应用(ACVRA2025)将于2025年2月28-3月2日在中国广州召开,会议将汇聚世界各地的顶尖学者、研究人员和行业专家,聚焦计算机视觉领域的最新研究动态与应用成就。本次会议将探讨前沿技术,包括深度学习、多模态学习、图像和视频分析、3D重建等,以及其在智能交通、医疗影像、增强现实和自动化等多个实际应用中的创新转化。会议官网:www.acvra.org目录前言一、
- 位图的深入解析:从数据结构到图像处理与C++实现
Exhausted、
机器学习计算机视觉人工智能图像处理c++算法数据结构开发语言
在学习优选算法课程的时候,博主学习位运算了解到位运算的这个概念,之前没有接触过,就查找了相关的资料,丰富一下自身,当作课外知识来了解一下。位图(Bitmap)是一种用于表示图像的数据结构,它将图像分解为像素的二维网格,每个像素的颜色值存储在一个矩阵中。位图广泛应用于计算机图形学、图像处理和计算机视觉等领域。目录1.位图的基本概念1.1像素1.2分辨率1.3颜色深度2.位图的存储格式2.1BMP格式
- 计算机视觉国内外研究现状(综述)
埃菲尔铁塔_CV算法
计算机视觉
1.国内外研究进展1.2.1特征提取研究进展特征提取是图像处理的一个重要环节,是进行身份识别和行为识别的重要部分。近年来,针对不同特征的提取,国内外学者提出了许多特征提取算法,同样特征提取的效果大都不错。但是在复杂的猪舍环境中提取猪的特征还是比较困难的。下面针对几种目前常用的特征提取算法进行一些介绍。(1)传统的特征提取算法传统特征提取算法已经发展了很久,现阶段比较成熟,是深度学习算法出来之前研究
- 【深入探索-deepseek】高等数学与AI的因果关系
我的青春不太冷
人工智能机器学习数学
目录数学在AI不同领域的应用区别一、计算机视觉领域1.线性代数2.微积分3.概率论与统计二、自然语言处理领域三、语音识别领域四、数学在AI不同领域应用的逻辑图五、参考资料数学在AI不同领域的应用区别一、计算机视觉领域1.线性代数图像变换:想象我们有一张二维图片,图片里有个点,它的位置用坐标((x,y))表示。现在我们想把这个点绕着图片的原点(就像把纸钉在墙上,以钉子的位置为中心)逆时针旋转一定角度
- 图像分类与目标检测算法
BugNest
AI算法分类目标检测ai人工智能图像处理
在计算机视觉领域,图像分类与目标检测是两项至关重要的技术。它们通过对图像进行深入解析和理解,为各种应用场景提供了强大的支持。本文将详细介绍这两项技术的算法原理、技术进展以及当前的落地应用。一、图像分类算法图像分类是指将输入的图像划分为预定义的类别之一。这一过程的核心在于特征提取和分类器的设计。1.特征提取特征提取是图像分类的第一步,其目标是从图像中提取出能够区分不同类别的关键信息。传统的特征提取方
- 【鸿蒙在OpenHarmony系统上集成OpenCV,实现图片裁剪】
萌虎不虎
OpenHarmonyharmonyosopencv华为
鸿蒙在OpenHarmony系统上集成OpenCV,实现图片裁剪OpenCV介绍OpenCV(OpenSourceComputerVisionLibrary)是一个开源的计算机视觉和机器学习软件库。它由一系列的C函数和少量C++类构成,同时提供Python、Java和MATLAB等语言的接口,实现了图像处理和计算机视觉方面的很多通用算法。OpenCV具有极广的应用领域,它包括但不限于:人脸识别和物
- 计算机视觉 工业相机、镜头、接口、光源概览及选型参考
坐望云起
深度学习从入门到精通计算机视觉数码相机人工智能镜头接口数据接口镜头
一、相机1、分类按芯片类型分类:CCD相机、CMOS相机按传感器的结构特性分类:线阵相机、面阵相机按输出信号方式分类:模拟相机、数码相机按输出色彩方式分类:黑白相机、彩色相机2、重要参数芯片尺寸芯片尺寸表示图像传感器感光区域的面积大小,直接决定了整个系统的物理放大率。相机的芯片尺寸如图所示。分辨率分辨率表示每英寸包含的像素数。对于图像来说,分辨率是非常重要的,决定了图像是否能够清晰地呈现:相机的分
- 【人工智能】Python中的深度学习优化器:从SGD到Adam
蒙娜丽宁
Python杂谈人工智能人工智能python深度学习
《PythonOpenCV从菜鸟到高手》带你进入图像处理与计算机视觉的大门!解锁Python编程的无限可能:《奇妙的Python》带你漫游代码世界在深度学习模型的训练过程中,优化器起着至关重要的作用,它决定了模型的收敛速度以及最终的性能。本文将介绍深度学习中常用的优化器,从传统的随机梯度下降(SGD)到现代的自适应优化器(如Adam)。我们将深入探讨每种优化器的原理、优缺点,并通过Python实现
- 【人工智能】基于Python和OpenCV实现实时人脸识别系统:从基础到应用
蒙娜丽宁
Python杂谈人工智能python开发语言
随着人工智能和计算机视觉的快速发展,人脸识别技术已广泛应用于监控、安全、社交媒体、金融和医疗等领域。本文将介绍如何利用Python和OpenCV库,结合dlib进行实时人脸识别的实现。通过构建一个基础的实时人脸识别系统,读者将深入了解人脸检测与识别的核心原理,掌握如何使用现有的计算机视觉工具快速开发一个有效的实时系统。本文将详细介绍如何通过OpenCV和dlib来实现人脸检测与识别,如何实时获取摄
- 【AI】人工智能没那么神秘!
仇辉攻防
人工智能ai语言模型自然语言处理机器学习深度学习网络安全
AI是什么?人工智能(ArtificialIntelligence),英文缩写为AI。AI人工智能不是简单的应用程序,而是一类技术,包含机器学习、自然语言处理、计算机视觉等多个领域。AI系统通常由算法、数据、模型和代码组成,其中代码用于实现算法,数据用于训练模型,最终形成智能决策能力。AI可以嵌入到应用程序中,但其本身是一个复杂的技术体系。AI为什么这么聪明?AI之所以看起来很聪明,主要是因为它通
- 双目立体视觉(1)
2501_90596733
双目立体视觉人工智能计算机视觉
1.背景计算机视觉技术,是以摄像头作为传感器来获取二维图像数据,并依靠计算机运用各类算法对这些图像数据展开处理。依据所采用视觉传感器数量的差异,可分为单目、双目以及多目视觉这几类。单目视觉依赖单摄像头获取二维平面图像,在知晓物体实际尺寸的前提下,结合相机成像模型能够计算出距离,但这种单一的2D图像在深度感知能力上存在局限,且较易受到动态背景的干扰,通常被应用于缺陷检测、目标识别等相关领域。多目视觉
- 深度学习练手小例子——cifar10数据集分类问题
☆cwlulu
深度学习分类人工智能
CIFAR-10是一个经典的计算机视觉数据集,广泛用于图像分类任务。它包含10个类别的60,000张彩色图像,每张图像的大小是32x32像素。数据集被分为50,000张训练图像和10,000张测试图像。每个类别包含6,000张图像,具体类别包括:飞机(airplane)汽车(automobile)鸟(bird)猫(cat)鹿(deer)狗(dog)青蛙(frog)马(horse)船(ship)卡车
- DeepSeek计算机视觉(Computer Vision)基础与实践
Evaporator Core
#DeepSeek快速入门计算机视觉计算机视觉人工智能
计算机视觉(ComputerVision)是人工智能领域的一个重要分支,专注于让计算机理解和处理图像和视频数据。计算机视觉技术广泛应用于图像分类、目标检测、图像分割、人脸识别等场景。DeepSeek提供了强大的工具和API,帮助我们高效地构建和训练计算机视觉模型。本文将详细介绍如何使用DeepSeek进行计算机视觉的基础与实践,并通过代码示例帮助你掌握这些技巧。1.计算机视觉的基本概念计算机视觉的
- 深度学习语义分割实战:ResNet 与 ViT 结合的模型解析
高山仰星
深度学习
1.引言语义分割是计算机视觉中的重要任务,其目标是将输入图像中的每个像素分类到特定的类别。本项目结合了ResNet(ResidualNetwork)和ViT(VisionTransformer),构建了高性能的语义分割模型。本文将详细解析该模型的架构、训练流程及其应用。2.语义分割模型解析本项目采用ResNet和ViT结合的方式进行语义分割,并使用CBAM注意力机制增强特征提取能力。涉及的核心文件
- 计算机视觉8:图像分割
听说你还在搞什么原创~
计算机视觉图像处理深度学习
1.图像分割概述图像分割主要分为阈值分割方法和边缘检测等方法。阈值分割方法是提出最早的一种方法。边缘检测方法是被研究的最多的一种分割方法,它试图通过检测包含不同区域的边缘来解决图像分割问题。比如微分算子边缘检测,以及为了降低噪声影响使用多尺度方法提取图像边缘。2.图像分割技术现状图像分割,是将一幅数字图像按照某种目的划分为两个或多个子图像区域。理想的图像分割算法,应该是对所有的图像都能够自动的划分
- 【2025版】最新AI大模型NLP全面解析,零基础入门到精通,收藏这篇就够了
程序员二飞
人工智能自然语言处理服务器学习知识图谱
近年来,随着深度学习技术的飞速发展,AI大模型作为人工智能领域的重要研究对象,正逐步成为学术界和产业界广泛关注的热点议题。AI大模型,作为一类具备庞大参数规模与卓越学习能力的神经网络模型,如BERT、GPT等,已在自然语言处理、计算机视觉等多个领域展现出卓越成效,极大地推动了相关领域的技术进步。前排提示,文末有大模型AGI-CSDN独家资料包哦!AI大模型的价值不仅体现于其庞大的参数规模与强大的学
- 轻量化网络模型调研报告
云雨、
网络人工智能深度学习
一、轻量化网络的为何诞生 深度神经网络模型被广泛应用在图像分类、物体检测,目标跟踪等计算机视觉任务中,并取得了巨大成功。随着时代发展,人们更加关注深度神经网络的实际应用性能,人工智能技术的一个趋势是在边缘端平台上部署高性能的神经网络模型,并能在真实场景中实时(>30帧)运行,如移动端/嵌入式设备,这些平台的特点是内存资源少,处理器性能不高,功耗受限,这使得目前精度最高的模型根本无法在这些平台进行
- 探索计算机视觉的基石:PASCAL VOC 数据集
卢姬铃Edric
探索计算机视觉的基石:PASCALVOC数据集1目标检测PASCALVOC数据集简介项目地址:https://gitcode.com/Resource-Bundle-Collection/dc7bf项目介绍PASCALVOC(PatternAnalysis,StatisticalModelingandComputationalLearningVisualObjectClasses)挑战赛是计算机视
- Ada语言的人工智能
赵旖琅
包罗万象golang开发语言后端
Ada语言的人工智能引言在计算机科学和技术迅速发展的今天,人工智能(ArtificialIntelligence,AI)已成为各行各业的重要推动力。这一领域涵盖了机器学习、自然语言处理、计算机视觉等多个方面,而在这些技术的背后,一种历史悠久且极具实用性的编程语言——Ada,正逐渐引起人们的关注。尽管Ada语言并非时期内最为流行的语言,但它凭借其可靠性、安全性以及并发处理能力,愈发显示出在人工智能领
- 【自学笔记】AIGC基础知识点总览-持续更新
Long_poem
笔记AIGC
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录AIGC基础知识点总览一、AIGC概述二、AIGC的核心要素三、AIGC的关键技术1.深度学习算法2.自然语言处理(NLP)3.计算机视觉(CV)4.多模态技术四、AIGC的应用领域五、AIGC的发展历程六、AIGC面临的挑战与未来展望七、知名AIGC产品与技术总结AIGC基础知识点总览一、AIGC概述定义:AIGC(AI-G
- 土壤分析:土壤污染监测_(18).土壤污染监测与修复的最新进展
zhubeibei168
农业检测opencv人工智能计算机视觉无人机图像处理农业检测
土壤污染监测与修复的最新进展1.引言随着工业化和城市化的快速发展,土壤污染问题日益严重,对环境和人类健康构成了巨大威胁。传统的土壤污染监测方法依赖于实验室分析,耗时且成本高昂。近年来,计算机视觉技术在土壤污染监测领域的应用取得了显著进展,通过图像处理和机器学习方法,可以快速、准确地识别和监测土壤污染情况。本节将介绍计算机视觉技术在土壤污染监测与修复中的最新进展,包括数据采集、图像处理、特征提取、污
- 用于计算机视觉领域的python第三方库_python一些工作用到的第三方库
weixin_39693437
1、opencv-python:用于实时处理计算机视觉方面的问题。使用NumPy数组。主要对图像的处理。使用:importcv2api:a:cv2.resize(filepath,size,(interpolation=))self.thumb_size=(600,800)cv2.imread(str(file)),self.thumb_size,interpolation=cv2.INTER_C
- 计算机视觉算法:开启智能视觉新时代
2501_90175811
计算机视觉
在当今数字化时代,计算机视觉算法正以前所未有的速度改变着我们的生活和工作方式。从人脸识别解锁手机到自动驾驶汽车感知周围环境,计算机视觉算法在众多领域发挥着至关重要的作用。计算机视觉算法旨在让计算机能够“看”和“理解”图像或视频中的内容,就像人类的视觉系统一样。它涉及到多个复杂的技术领域,包括图像处理、模式识别、机器学习等。核心算法与技术图像预处理:这是计算机视觉的第一步,主要包括图像的降噪、增强对
- 【Android—OpenCV实战】实现霍夫圆检测针对沙盘交通灯信号检测
我的青春不太冷
androidopencv人工智能计算机视觉Python
文章目录AndroidOpenCV实战:霍夫圆检测实现沙盘交通灯智能识别引言:当计算机视觉遇见智慧交通霍夫圆检测原理剖析数学之美:参数空间转换关键参数解析Android实现全流程环境准备核心代码解析颜色识别策略性能优化技巧实验结果对比完整实现流程图Python实现霍夫圆检测Android实现霍夫圆检测Android实现霍夫圆检测(精简版本)扩展方向以及建议参考文献AndroidOpenCV实战:霍
- 雷军力荐学 AI,背后隐藏着怎样的时代密码?
羑悻的小杀马特.
AI学习人工智能c++AI大模型社会变化
本文围绕雷军力荐学AI展开,剖析AI发展现状、核心技术,阐述C++在AI的应用,分析AI带来的机遇与挑战,还指明学习路径,强调个人学AI顺应时代且意义重大;欢迎大家阅读丫!!!目录一、本篇背景:二、AI发展现状与趋势:2.1AI发展历程回顾:2.2当前AI应用领域:2.3AI未来发展趋势:三、AI核心技术剖析:3.1机器学习基础:3.2深度学习核心:3.3自然语言处理要点:3.4计算机视觉前沿:3
- 无人机目标追踪技术
kely117
无人机
无人机目标追踪是指通过无人机搭载的传感器和计算系统,实时跟踪和定位特定目标的技术:传感器技术:无人机通常配备摄像头、雷达、激光雷达等传感器,用于捕捉目标的图像和距离信息。图像处理与计算机视觉:通过先进的图像处理和计算机视觉算法,无人机能够从传感器获取的原始数据中提取有用的信息,如目标的位置、形状和运动轨迹。目标识别与跟踪算法:采用机器学习和深度学习算法,无人机能够识别和分类不同的目标,并对目标进行
- 行人检测系统:基于YOLOv5的行人检测与UI界面实现
深度学习&目标检测实战项目
YOLOuipython开发语言深度学习视觉检测计算机视觉
1.引言行人检测(PedestrianDetection)是计算机视觉中的一个重要任务,广泛应用于自动驾驶、智能安防、交通监控等领域。行人检测的目标是从图像或视频中检测出行人的位置,并标出其在图像中的边界框。随着深度学习技术的快速发展,YOLO(YouOnlyLookOnce)系列模型在目标检测任务中表现出了极高的准确性和速度,成为了行人检测的常用工具。本文将详细介绍如何使用YOLOv5实现行人检
- OpenCV:视频背景减除
Quz
计算机视觉opencv音视频人工智能计算机视觉
目录简述1.MOG1.1主要特点1.2代码示例1.3运行效果2.MOG22.1主要特点2.2代码示例2.3运行效果3.KNN4.GMG5.CNT6.LSBP7.如何选择适合的接口?7.1考虑场景的动态性7.2考虑光照变化情况7.3考虑实时性要求7.4考虑物体特征7.5考虑阴影影响8.资源下载简述在计算机视觉领域,背景减除广泛应用于目标检测、视频监控、运动分析等任务。OpenCV提供了多种背景减除算
- LeetCode[位运算] - #137 Single Number II
Cwind
javaAlgorithmLeetCode题解位运算
原题链接:#137 Single Number II
要求:
给定一个整型数组,其中除了一个元素之外,每个元素都出现三次。找出这个元素
注意:算法的时间复杂度应为O(n),最好不使用额外的内存空间
难度:中等
分析:
与#136类似,都是考察位运算。不过出现两次的可以使用异或运算的特性 n XOR n = 0, n XOR 0 = n,即某一
- 《JavaScript语言精粹》笔记
aijuans
JavaScript
0、JavaScript的简单数据类型包括数字、字符创、布尔值(true/false)、null和undefined值,其它值都是对象。
1、JavaScript只有一个数字类型,它在内部被表示为64位的浮点数。没有分离出整数,所以1和1.0的值相同。
2、NaN是一个数值,表示一个不能产生正常结果的运算结果。NaN不等于任何值,包括它本身。可以用函数isNaN(number)检测NaN,但是
- 你应该更新的Java知识之常用程序库
Kai_Ge
java
在很多人眼中,Java 已经是一门垂垂老矣的语言,但并不妨碍 Java 世界依然在前进。如果你曾离开 Java,云游于其它世界,或是每日只在遗留代码中挣扎,或许是时候抬起头,看看老 Java 中的新东西。
Guava
Guava[gwɑ:və],一句话,只要你做Java项目,就应该用Guava(Github)。
guava 是 Google 出品的一套 Java 核心库,在我看来,它甚至应该
- HttpClient
120153216
httpclient
/**
* 可以传对象的请求转发,对象已流形式放入HTTP中
*/
public static Object doPost(Map<String,Object> parmMap,String url)
{
Object object = null;
HttpClient hc = new HttpClient();
String fullURL
- Django model字段类型清单
2002wmj
django
Django 通过 models 实现数据库的创建、修改、删除等操作,本文为模型中一般常用的类型的清单,便于查询和使用: AutoField:一个自动递增的整型字段,添加记录时它会自动增长。你通常不需要直接使用这个字段;如果你不指定主键的话,系统会自动添加一个主键字段到你的model。(参阅自动主键字段) BooleanField:布尔字段,管理工具里会自动将其描述为checkbox。 Cha
- 在SQLSERVER中查找消耗CPU最多的SQL
357029540
SQL Server
返回消耗CPU数目最多的10条语句
SELECT TOP 10
total_worker_time/execution_count AS avg_cpu_cost, plan_handle,
execution_count,
(SELECT SUBSTRING(text, statement_start_of
- Myeclipse项目无法部署,Undefined exploded archive location
7454103
eclipseMyEclipse
做个备忘!
错误信息为:
Undefined exploded archive location
原因:
在工程转移过程中,导致工程的配置文件出错;
解决方法:
- GMT时间格式转换
adminjun
GMT时间转换
普通的时间转换问题我这里就不再罗嗦了,我想大家应该都会那种低级的转换问题吧,现在我向大家总结一下如何转换GMT时间格式,这种格式的转换方法网上还不是很多,所以有必要总结一下,也算给有需要的朋友一个小小的帮助啦。
1、可以使用
SimpleDateFormat SimpleDateFormat
EEE-三位星期
d-天
MMM-月
yyyy-四位年
- Oracle数据库新装连接串问题
aijuans
oracle数据库
割接新装了数据库,客户端登陆无问题,apache/cgi-bin程序有问题,sqlnet.log日志如下:
Fatal NI connect error 12170.
VERSION INFORMATION: TNS for Linux: Version 10.2.0.4.0 - Product
- 回顾java数组复制
ayaoxinchao
java数组
在写这篇文章之前,也看了一些别人写的,基本上都是大同小异。文章是对java数组复制基础知识的回顾,算是作为学习笔记,供以后自己翻阅。首先,简单想一下这个问题:为什么要复制数组?我的个人理解:在我们在利用一个数组时,在每一次使用,我们都希望它的值是初始值。这时我们就要对数组进行复制,以达到原始数组值的安全性。java数组复制大致分为3种方式:①for循环方式 ②clone方式 ③arrayCopy方
- java web会话监听并使用spring注入
bewithme
Java Web
在java web应用中,当你想在建立会话或移除会话时,让系统做某些事情,比如说,统计在线用户,每当有用户登录时,或退出时,那么可以用下面这个监听器来监听。
import java.util.ArrayList;
import java.ut
- NoSQL数据库之Redis数据库管理(Redis的常用命令及高级应用)
bijian1013
redis数据库NoSQL
一 .Redis常用命令
Redis提供了丰富的命令对数据库和各种数据库类型进行操作,这些命令可以在Linux终端使用。
a.键值相关命令
b.服务器相关命令
1.键值相关命令
&
- java枚举序列化问题
bingyingao
java枚举序列化
对象在网络中传输离不开序列化和反序列化。而如果序列化的对象中有枚举值就要特别注意一些发布兼容问题:
1.加一个枚举值
新机器代码读分布式缓存中老对象,没有问题,不会抛异常。
老机器代码读分布式缓存中新对像,反序列化会中断,所以在所有机器发布完成之前要避免出现新对象,或者提前让老机器拥有新增枚举的jar。
2.删一个枚举值
新机器代码读分布式缓存中老对象,反序列
- 【Spark七十八】Spark Kyro序列化
bit1129
spark
当使用SparkContext的saveAsObjectFile方法将对象序列化到文件,以及通过objectFile方法将对象从文件反序列出来的时候,Spark默认使用Java的序列化以及反序列化机制,通常情况下,这种序列化机制是很低效的,Spark支持使用Kyro作为对象的序列化和反序列化机制,序列化的速度比java更快,但是使用Kyro时要注意,Kyro目前还是有些bug。
Spark
- Hybridizing OO and Functional Design
bookjovi
erlanghaskell
推荐博文:
Tell Above, and Ask Below - Hybridizing OO and Functional Design
文章中把OO和FP讲的深入透彻,里面把smalltalk和haskell作为典型的两种编程范式代表语言,此点本人极为同意,smalltalk可以说是最能体现OO设计的面向对象语言,smalltalk的作者Alan kay也是OO的最早先驱,
- Java-Collections Framework学习与总结-HashMap
BrokenDreams
Collections
开发中常常会用到这样一种数据结构,根据一个关键字,找到所需的信息。这个过程有点像查字典,拿到一个key,去字典表中查找对应的value。Java1.0版本提供了这样的类java.util.Dictionary(抽象类),基本上支持字典表的操作。后来引入了Map接口,更好的描述的这种数据结构。
&nb
- 读《研磨设计模式》-代码笔记-职责链模式-Chain Of Responsibility
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 业务逻辑:项目经理只能处理500以下的费用申请,部门经理是1000,总经理不设限。简单起见,只同意“Tom”的申请
* bylijinnan
*/
abstract class Handler {
/*
- Android中启动外部程序
cherishLC
android
1、启动外部程序
引用自:
http://blog.csdn.net/linxcool/article/details/7692374
//方法一
Intent intent=new Intent();
//包名 包名+类名(全路径)
intent.setClassName("com.linxcool", "com.linxcool.PlaneActi
- summary_keep_rate
coollyj
SUM
BEGIN
/*DECLARE minDate varchar(20) ;
DECLARE maxDate varchar(20) ;*/
DECLARE stkDate varchar(20) ;
DECLARE done int default -1;
/* 游标中 注册服务器地址 */
DE
- hadoop hdfs 添加数据目录出错
daizj
hadoophdfs扩容
由于原来配置的hadoop data目录快要用满了,故准备修改配置文件增加数据目录,以便扩容,但由于疏忽,把core-site.xml, hdfs-site.xml配置文件dfs.datanode.data.dir 配置项增加了配置目录,但未创建实际目录,重启datanode服务时,报如下错误:
2014-11-18 08:51:39,128 WARN org.apache.hadoop.h
- grep 目录级联查找
dongwei_6688
grep
在Mac或者Linux下使用grep进行文件内容查找时,如果给定的目标搜索路径是当前目录,那么它默认只搜索当前目录下的文件,而不会搜索其下面子目录中的文件内容,如果想级联搜索下级目录,需要使用一个“-r”参数:
grep -n -r "GET" .
上面的命令将会找出当前目录“.”及当前目录中所有下级目录
- yii 修改模块使用的布局文件
dcj3sjt126com
yiilayouts
方法一:yii模块默认使用系统当前的主题布局文件,如果在主配置文件中配置了主题比如: 'theme'=>'mythm', 那么yii的模块就使用 protected/themes/mythm/views/layouts 下的布局文件; 如果未配置主题,那么 yii的模块就使用 protected/views/layouts 下的布局文件, 总之默认不是使用自身目录 pr
- 设计模式之单例模式
come_for_dream
设计模式单例模式懒汉式饿汉式双重检验锁失败无序写入
今天该来的面试还没来,这个店估计不会来电话了,安静下来写写博客也不错,没事翻了翻小易哥的博客甚至与大牛们之间的差距,基础知识不扎实建起来的楼再高也只能是危楼罢了,陈下心回归基础把以前学过的东西总结一下。
*********************************
- 8、数组
豆豆咖啡
二维数组数组一维数组
一、概念
数组是同一种类型数据的集合。其实数组就是一个容器。
二、好处
可以自动给数组中的元素从0开始编号,方便操作这些元素
三、格式
//一维数组
1,元素类型[] 变量名 = new 元素类型[元素的个数]
int[] arr =
- Decode Ways
hcx2013
decode
A message containing letters from A-Z is being encoded to numbers using the following mapping:
'A' -> 1
'B' -> 2
...
'Z' -> 26
Given an encoded message containing digits, det
- Spring4.1新特性——异步调度和事件机制的异常处理
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- squid3(高命中率)缓存服务器配置
liyonghui160com
系统:centos 5.x
需要的软件:squid-3.0.STABLE25.tar.gz
1.下载squid
wget http://www.squid-cache.org/Versions/v3/3.0/squid-3.0.STABLE25.tar.gz
tar zxf squid-3.0.STABLE25.tar.gz &&
- 避免Java应用中NullPointerException的技巧和最佳实践
pda158
java
1) 从已知的String对象中调用equals()和equalsIgnoreCase()方法,而非未知对象。 总是从已知的非空String对象中调用equals()方法。因为equals()方法是对称的,调用a.equals(b)和调用b.equals(a)是完全相同的,这也是为什么程序员对于对象a和b这么不上心。如果调用者是空指针,这种调用可能导致一个空指针异常
Object unk
- 如何在Swift语言中创建http请求
shoothao
httpswift
概述:本文通过实例从同步和异步两种方式上回答了”如何在Swift语言中创建http请求“的问题。
如果你对Objective-C比较了解的话,对于如何创建http请求你一定驾轻就熟了,而新语言Swift与其相比只有语法上的区别。但是,对才接触到这个崭新平台的初学者来说,他们仍然想知道“如何在Swift语言中创建http请求?”。
在这里,我将作出一些建议来回答上述问题。常见的
- Spring事务的传播方式
uule
spring事务
传播方式:
新建事务
required
required_new - 挂起当前
非事务方式运行
supports
&nbs