torch.Tensor.grad属性的使用说明

参考链接: torch.Tensor.grad

torch.Tensor.grad属性的使用说明_第1张图片
原文及翻译:


grad
属性:grad
    This attribute is None by default and becomes a Tensor the first time a call to 
    backward() computes gradients for self. The attribute will then contain the 
    gradients computed and future calls to backward() will accumulate (add) 
    gradients into it.
    该参数默认情况下是None,但是当第一次为当前张量自身self计算梯度调用backward()方法时,
    该属性grad将变成一个Tensor张量类型. 该属性将包含计算所得的梯度,在这之后如果再次调用
    backward()方法,那么将会对这个grad属性进行累加.

代码实验展示:

Microsoft Windows [版本 10.0.18363.1316]
(c) 2019 Microsoft Corporation。保留所有权利。

C:\Users\chenxuqi>conda activate ssd4pytorch1_2_0

(ssd4pytorch1_2_0) C:\Users\chenxuqi>python
Python 3.7.7 (default, May  6 2020, 11:45:54) [MSC v.1916 64 bit (AMD64)] :: Anaconda, Inc. on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> import torch
>>> torch.manual_seed(seed=20200910)
<torch._C.Generator object at 0x000002B58817D330>
>>>
>>> a = torch.randn(3,5,requires_grad=True)
>>> a
tensor([[ 0.2824, -0.3715,  0.9088, -1.7601, -0.1806],
        [ 2.0937,  1.0406, -1.7651,  1.1216,  0.8440],
        [ 0.1783,  0.6859, -1.5942, -0.2006, -0.4050]], requires_grad=True)
>>> a.grad
>>>
>>> b = a.sum()
>>> b
tensor(0.8781, grad_fn=<SumBackward0>)
>>> c = a.mean()
>>>
>>> b
tensor(0.8781, grad_fn=<SumBackward0>)
>>> c
tensor(0.0585, grad_fn=<MeanBackward0>)
>>> print(a.grad)
None
>>>
>>> b.backward()
>>> a.grad
tensor([[1., 1., 1., 1., 1.],
        [1., 1., 1., 1., 1.],
        [1., 1., 1., 1., 1.]])
>>>
>>> # 不清零的话梯度将会累加
>>> c.backward()
>>> a.grad
tensor([[1.0667, 1.0667, 1.0667, 1.0667, 1.0667],
        [1.0667, 1.0667, 1.0667, 1.0667, 1.0667],
        [1.0667, 1.0667, 1.0667, 1.0667, 1.0667]])
>>>
>>> a.grad.zero_()
tensor([[0., 0., 0., 0., 0.],
        [0., 0., 0., 0., 0.],
        [0., 0., 0., 0., 0.]])
>>> a.grad
tensor([[0., 0., 0., 0., 0.],
        [0., 0., 0., 0., 0.],
        [0., 0., 0., 0., 0.]])
>>>
>>> c = a.mean()
>>> c.backward()
>>> a.grad
tensor([[0.0667, 0.0667, 0.0667, 0.0667, 0.0667],
        [0.0667, 0.0667, 0.0667, 0.0667, 0.0667],
        [0.0667, 0.0667, 0.0667, 0.0667, 0.0667]])
>>>
>>>

参考链接: PyTorch使用torch.sort()函数来筛选出前k个最大的项或者筛选出前k个最小的项
代码实验展示,反向传播,只传播到前K个最大的项:

Microsoft Windows [版本 10.0.18363.1316]
(c) 2019 Microsoft Corporation。保留所有权利。

C:\Users\chenxuqi>conda activate ssd4pytorch1_2_0

(ssd4pytorch1_2_0) C:\Users\chenxuqi>python
Python 3.7.7 (default, May  6 2020, 11:45:54) [MSC v.1916 64 bit (AMD64)] :: Anaconda, Inc. on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> import torch
>>> torch.manual_seed(seed=20200910)
<torch._C.Generator object at 0x000001F7F101D330>
>>>
>>> data = torch.randn(15,requires_grad=True)
>>> data
tensor([ 0.2824, -0.3715,  0.9088, -1.7601, -0.1806,  2.0937,  1.0406, -1.7651,
         1.1216,  0.8440,  0.1783,  0.6859, -1.5942, -0.2006, -0.4050],
       requires_grad=True)
>>>
>>> # 筛选出前k个最大的数
>>> k = 7
>>> a, idx1 = torch.sort(data, descending=True)
>>> b, idx2 = torch.sort(idx1)
>>> a
tensor([ 2.0937,  1.1216,  1.0406,  0.9088,  0.8440,  0.6859,  0.2824,  0.1783,
        -0.1806, -0.2006, -0.3715, -0.4050, -1.5942, -1.7601, -1.7651],
       grad_fn=<SortBackward>)
>>> b
tensor([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14])
>>> idx1
tensor([ 5,  8,  6,  2,  9, 11,  0, 10,  4, 13,  1, 14, 12,  3,  7])
>>> idx2
tensor([ 6, 10,  3, 13,  8,  0,  2, 14,  1,  4,  7,  5, 12,  9, 11])
>>>
>>> a
tensor([ 2.0937,  1.1216,  1.0406,  0.9088,  0.8440,  0.6859,  0.2824,  0.1783,
        -0.1806, -0.2006, -0.3715, -0.4050, -1.5942, -1.7601, -1.7651],
       grad_fn=<SortBackward>)
>>> data
tensor([ 0.2824, -0.3715,  0.9088, -1.7601, -0.1806,  2.0937,  1.0406, -1.7651,
         1.1216,  0.8440,  0.1783,  0.6859, -1.5942, -0.2006, -0.4050],
       requires_grad=True)
>>> data[idx2<k]
tensor([0.2824, 0.9088, 2.0937, 1.0406, 1.1216, 0.8440, 0.6859],
       grad_fn=<IndexBackward>)
>>> sum_topK = data[idx2<k].sum()
>>> sum_topK
tensor(6.9770, grad_fn=<SumBackward0>)
>>>
>>> 2.0937+1.1216+1.0406+0.9088+0.8440+0.6859+0.2824
6.977000000000001
>>> data.grad
>>> print(data.grad)
None
>>> sum_topK.backward()
>>> print(data.grad)
tensor([1., 0., 1., 0., 0., 1., 1., 0., 1., 1., 0., 1., 0., 0., 0.])
>>>
>>>
>>>

你可能感兴趣的:(torch.Tensor.grad属性的使用说明)