07.2. 使用块的网络(VGG)

文章目录

    • 7.2. 使用块的网络(VGG)
      • 7.2.1. VGG块
      • 7.2.2. VGG网络
      • 7.2.3. 训练模型
      • 7.2.4. 小结

7.2. 使用块的网络(VGG)

虽然AlexNet证明深层神经网络卓有成效,但它没有提供一个通用的模板来指导后续的研究人员设计新的网络。
开始从单个神经元的角度思考问题,发展到整个层,现在又转向块,重复层的模式。

使用块的想法首先出现在牛津大学的视觉几何组(visualgeometry group)的VGG网络中。 通过使用循环和子程序,可以很容易地在任何现代深度学习框架的代码中实现这些重复的架构。

7.2.1. VGG块

经典卷积神经网络的基本组成部分是下面的这个序列:

  • 带填充以保持分辨率的卷积层;

  • 非线性激活函数,如ReLU;

  • 汇聚层,如最大汇聚层。

一个VGG块与之类似,由一系列卷积层组成,后面再加上用于空间下采样的最大汇聚层。
在下面的代码中,我们定义了一个名为vgg_block的函数来实现一个VGG块。

# 该函数有三个参数,分别对应于卷积层的数量num_convs、输入通道的数量in_channels 和输出通道的数量out_channels.

import torch
from torch import nn
from d2l import torch as d2l


def vgg_block(num_convs, in_channels, out_channels):
    layers = []
    for _ in range(num_convs):
        layers.append(nn.Conv2d(in_channels, out_channels,
                                kernel_size=3, padding=1))
        layers.append(nn.ReLU())
        in_channels = out_channels
    layers.append(nn.MaxPool2d(kernel_size=2,stride=2))
    return nn.Sequential(*layers)

7.2.2. VGG网络

VGG网络可以分为两部分:
第一部分主要由卷积层和汇聚层组成,第二部分由全连接层组成。
07.2. 使用块的网络(VGG)_第1张图片

从AlexNet到VGG,它们本质上都是块设计。

VGG神经网络连接的几个VGG块(在vgg_block函数中定义)。其中有超参数变量conv_arch。
该变量指定了每个VGG块里卷积层个数和输出通道数。
全连接模块则与AlexNet中的相同。

原始VGG网络有5个卷积块,其中前两个块各有一个卷积层,后三个块各包含两个卷积层。
第一个模块有64个输出通道,每个后续模块将输出通道数量翻倍,直到该数字达到512。
由于该网络使用8个卷积层和3个全连接层,因此它通常被称为VGG-11。

conv_arch = ((1, 64), (1, 128), (2, 256), (2, 512), (2, 512))

# 代码实现了VGG-11。可以通过在conv_arch上执行for循环来简单实现。
def vgg(conv_arch):
    conv_blks = []
    in_channels = 1
    # 卷积层部分
    for (num_convs, out_channels) in conv_arch:
        conv_blks.append(vgg_block(num_convs, in_channels, out_channels))
        in_channels = out_channels

    return nn.Sequential(
        *conv_blks, nn.Flatten(),
        # 全连接层部分
        nn.Linear(out_channels * 7 * 7, 4096), nn.ReLU(), nn.Dropout(0.5),
        nn.Linear(4096, 4096), nn.ReLU(), nn.Dropout(0.5),
        nn.Linear(4096, 10))

net = vgg(conv_arch)

# 接下来,我们将构建一个高度和宽度为224的单通道数据样本,以观察每个层输出的形状。
X = torch.randn(size=(1, 1, 224, 224))
for blk in net:
    X = blk(X)
    print(blk.__class__.__name__,'output shape:\t',X.shape)

# result
Sequential output shape:     torch.Size([1, 64, 112, 112])
Sequential output shape:     torch.Size([1, 128, 56, 56])
Sequential output shape:     torch.Size([1, 256, 28, 28])
Sequential output shape:     torch.Size([1, 512, 14, 14])
Sequential output shape:     torch.Size([1, 512, 7, 7])
Flatten output shape:        torch.Size([1, 25088])
Linear output shape:         torch.Size([1, 4096])
ReLU output shape:   torch.Size([1, 4096])
Dropout output shape:        torch.Size([1, 4096])
Linear output shape:         torch.Size([1, 4096])
ReLU output shape:   torch.Size([1, 4096])
Dropout output shape:        torch.Size([1, 4096])
Linear output shape:         torch.Size([1, 10])

7.2.3. 训练模型

由于VGG-11比AlexNet计算量更大,因此我们构建了一个通道数较少的网络,足够用于训练Fashion-MNIST数据集。

ratio = 4
small_conv_arch = [(pair[0], pair[1] // ratio) for pair in conv_arch]
net = vgg(small_conv_arch)

lr, num_epochs, batch_size = 0.05, 10, 128
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=224)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())

# result
loss 0.177, train acc 0.934, test acc 0.911
2562.3 examples/sec on cuda:0

07.2. 使用块的网络(VGG)_第2张图片

7.2.4. 小结

  • VGG-11使用可复用的卷积块构造网络。不同的VGG模型可通过每个块中卷积层数量和输出通道数量的差异来定义。

  • 块的使用导致网络定义的非常简洁。使用块可以有效地设计复杂的网络。

  • 在VGG论文中,Simonyan和Ziserman尝试了各种架构。特别是他们发现深层且窄的卷积(即)比较浅层且宽的卷积更有效。

你可能感兴趣的:(Python基础学习,python书籍笔记,#,网络,深度学习,cnn)