- 轻量级模型解读——轻量transformer系列
lishanlu136
#图像分类轻量级模型transformer图像分类
先占坑,持续更新。。。文章目录1、DeiT2、ConViT3、Mobile-Former4、MobileViTTransformer是2017谷歌提出的一篇论文,最早应用于NLP领域的机器翻译工作,Transformer解读,但随着2020年DETR和ViT的出现(DETR解读,ViT解读),其在视觉领域的应用也如雨后春笋般渐渐出现,其特有的全局注意力机制给图像识别领域带来了重要参考。但是tran
- transformer架构(Transformer Architecture)原理与代码实战案例讲解
AI架构设计之禅
大数据AI人工智能Python入门实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
transformer架构(TransformerArchitecture)原理与代码实战案例讲解关键词:Transformer,自注意力机制,编码器-解码器,预训练,微调,NLP,机器翻译作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来自然语言处理(NLP)领域的发展经历了从规则驱动到统计驱动再到深度学习驱动的三个阶段。
- 论文学习笔记 VMamba: Visual State Space Model
Wils0nEdwards
学习笔记
概览这篇论文的动机源于在计算机视觉领域设计计算高效的网络架构的持续需求。当前的视觉模型如卷积神经网络(CNNs)和视觉Transformer(ViTs)在处理大规模视觉任务时展现出良好的表现,但都存在各自的局限性。特别是,ViTs尽管在处理大规模数据上具有优势,但其自注意力机制的二次复杂度对高分辨率图像处理时的计算成本极高。因此,研究者希望通过引入新的架构来降低这种复杂度,并提高视觉任务的效率。现
- 计算机视觉中,如何理解自适应和注意力机制的关系?
Wils0nEdwards
计算机视觉人工智能
自适应和注意力机制之间的关系密切相关,注意力机制本质上是一种自适应的计算方法,它能够根据输入数据的不同特点,自主选择和聚焦于输入的某些部分或特征。以下是两者之间的具体关系和如何理解它们:1.注意力机制的自适应特性注意力机制的核心功能是为不同输入元素(如特征、位置、通道等)分配不同的权重。这些权重是通过学习动态生成的,表示模型对不同输入元素的关注程度。由于这些权重是根据具体的输入数据动态计算的,因此
- 《自然语言处理 Transformer 模型详解》
黑色叉腰丶大魔王
自然语言处理transformer人工智能
一、引言在自然语言处理领域,Transformer模型的出现是一个重大的突破。它摒弃了传统的循环神经网络(RNN)和卷积神经网络(CNN)架构,完全基于注意力机制,在机器翻译、文本生成、问答系统等众多任务中取得了卓越的性能。本文将深入讲解Transformer模型的原理、结构和应用。二、Transformer模型的背景在Transformer出现之前,RNN及其变体(如LSTM和GRU)是自然语言
- 验证resneXt,densenet,mobilenet和SENet的特色结构
dfj77477
人工智能python
简介图像分类对网络结构的要求,一个是精度,另一个是速度。这两个需求推动了网络结构的发展。resneXt:分组卷积,降低了网络参数个数。densenet:密集的跳连接。mobilenet:标准卷积分解成深度卷积和逐点卷积,即深度分离卷积。SENet:注意力机制。简单起见,使用了[1]的代码,注释掉layer4,作为基本框架resnet14。然后改变局部结构,验证分类效果。实验结果GPU:gtx107
- 微积分在神经架构搜索中的应用
光剑书架上的书
深度强化学习原理与实战元学习原理与实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
微积分在神经架构搜索中的应用1.背景介绍随着深度学习技术的飞速发展,神经网络模型的复杂度也在不断提高,从最初的简单全连接网络,到如今的卷积神经网络、循环神经网络、注意力机制等各种复杂的神经网络架构。这些先进的神经网络架构大大提高了深度学习模型的性能,但同时也给神经网络的设计和调优带来了巨大的挑战。手工设计神经网络架构通常需要大量的专业知识和经验积累,过程繁琐复杂,难以推广。为了解决这一问题,神经架
- CVPR 2021 | 即插即用! CA:新注意力机制,助力分类/检测/分割涨点!
Akita·wang
文献解析paperpython机器学习人工智能深度学习计算机视觉
摘要最近关于移动网络设计的研究已经证明了通道注意(例如,挤压和激发注意)对于提升模型性能的显著效果,但是它们通常忽略位置信息,而位置信息对于生成空间选择性注意图是重要的。本文提出了一种新的移动网络注意机制,将位置信息嵌入到信道注意中,我们称之为“协同注意”。与通过2D全局汇集将特征张量转换为单个特征向量的通道注意力不同,坐标注意力将通道注意力分解为两个1D特征编码过程,这两个过程分别沿两个空间方向
- Transformer、BERT、GPT、T5、LLM(大语言模型),以及它们在实际行业中的运用
Funhpc_huachen
transformerbertgpt语言模型深度学习
作为AI智能大模型的专家训练师,我将从主流模型框架的角度来分析其核心技术特点及其在不同实际行业中的应用。我们重点讨论以下几个主流模型框架:Transformer、BERT、GPT、T5、LLM(大语言模型),以及它们在实际行业中的运用。1.Transformer框架Transformer是一种基础的深度学习模型架构,由Google于2017年提出。它引入了注意力机制(Self-Attention)
- Transformer模型在文本摘要任务中的应用与性能分析
liuxin33445566
transformer深度学习人工智能
Transformer模型自从由Vaswani等人在2017年提出以来,已经在自然语言处理(NLP)的多个领域取得了显著的成果,尤其是在文本摘要任务中。文本摘要是将长文本转换成更短的、包含关键信息的文本的过程。本文将探讨Transformer模型在文本摘要任务中的应用,并分析其性能表现。1.Transformer模型简介Transformer模型是一种基于自注意力机制的神经网络架构,它摆脱了传统的
- 爆改YOLOv8|利用yolov10的PSA注意力机制改进yolov8-高效涨点
不想敲代码!!!
爆改yolov8即插即用YOLOyolov8目标检测python人工智能
1,本文介绍PSA是一种改进的自注意力机制,旨在提升模型的效率和准确性。传统的自注意力机制需要计算所有位置对之间的注意力,这会导致计算复杂度高和训练时间长。PSA通过引入极化因子来减少需要计算的注意力对的数量,从而降低计算负担。极化因子是一个向量,通过与每个位置的向量点积,确定哪些位置需要计算注意力。这种方法可以在保持模型准确度的前提下,显著减少计算量,从而提升自注意力机制的效率。关于PSA的详细
- You Only Cache Once: Decoder-Decoder Architectures for Language Models
YiHanXii
语言模型人工智能自然语言处理
这篇论文介绍了一种名为YOCO(YouOnlyCacheOnce)的新型解码器-解码器架构,专为大型语言模型设计,以提高推理效率和性能。以下是其核心内容的总结:YOCO架构关键特点:双重解码器结构:YOCO由自解码器和交叉解码器两部分组成,自解码器生成全局键值(KV)缓存,交叉解码器通过交叉注意力机制重用这些缓存。单次缓存:与标准Transformer相比,YOCO只缓存一次KV对,显著减少了GP
- 深度学习算法——Transformer
fw菜菜
数学建模深度学习transformer人工智能数学建模pythonpytorch
参考教材:动手学pytorch一、模型介绍Transformer模型完全基于注意力机制,没有任何卷积层或循环神经网络层。尽管Transformer最初是应用于在文本数据上的序列到序列学习,但现在已经推广到各种现代的深度学习中,例如语言、视觉、语音和强化学习领域。Transformer作为编码器-解码器架构的一个实例,其整体架构图在下图中展示。正如所见到的,Trans‐former是由编码器和解码器
- 计算机视觉之 GSoP 注意力模块
Midsummer-逐梦
计算机视觉(CV)深度学习机器学习人工智能
计算机视觉之GSoP注意力模块一、简介GSopBlock是一个自定义的神经网络模块,主要用于实现GSoP(GlobalSecond-orderPooling)注意力机制。GSoP注意力机制通过计算输入特征的协方差矩阵,捕捉全局二阶统计信息,从而增强模型的表达能力。原论文:《GlobalSecond-orderPoolingConvolutionalNetworks(arxiv.org)》二、语法和
- 大语言模型诞生、探索和爆发阶段
花开盛夏^.^
人工智能语言模型人工智能自然语言处理
大语言模型的发展可以分为几个阶段,每个阶段都有其特点和发展重点。以下是大致的时间线以及各个阶段的特点:一、大语言模型诞生阶段这一阶段大约从2017年末到2019年初,期间出现了几个关键的技术突破,这些技术奠定了现代大语言模型的基础。2017年:Google发表了Transformer架构,这是一种基于自注意力机制的神经网络架构,它彻底改变了自然语言处理(NLP)领域,使得大规模并行化处理成为可能,
- Transformer面试真题详解——覆盖99%的Transformer面试问题(建议收藏)
爱睡觉的咋
LLMtransformer深度学习人工智能
文章目录1.请简述一下Transformer的基本结构和原理2.Transformer为什么使用多头注意力机制3.Transformer计算attention为什么选择点乘而不是加法?两个计算复杂度和效果上有什么区别?4.为什么在softmax之后要对attention进行scaled(为什么除以d_k的平方根)5.在计算attentionscore时,如何对padding做mask操作6.简单介
- 【论文笔记】Training language models to follow instructions with human feedback B部分
Ctrl+Alt+L
大模型论文整理论文笔记论文阅读语言模型人工智能自然语言处理
TraininglanguagemodelstofollowinstructionswithhumanfeedbackB部分回顾一下第一代GPT-1:设计思路是“海量无标记文本进行无监督预训练+少量有标签文本有监督微调”范式;模型架构是基于Transformer的叠加解码器(掩码自注意力机制、残差、Layernorm);下游各种具体任务的适应是通过在模型架构的输出后增加线性权重WyW_{y}Wy实
- unet各模块内容的理解(包含注意力机制、残差、以及数据维度的变化)
云梦之上
#扩散模型系统性学习人工智能神经网络pytorch
文章目录attention机制Unet的各个模块的设计①残差块②下块做一次残差,做一次自注意力③上块:这里做了skipconnect,做一次残差,做一次注意力④中块:做两次残差和一次自注意力⑤上采样:通道数不变,长宽翻两倍⑥下采样:通道数不变,长宽缩小到原来的一半整个unet模块unet模块的示意图参考的unet代码unet代码attention机制参考内容:超详细图解Self-Attention
- 总结:大模型技术栈---算法与原理
lichunericli
LLM零碎知识人工智能自然语言处理算法
原文地址:大模型技术栈-算法与原理1.tokenizer方法word-levelchar-levelsubword-levelBPEWordPieceUniLMSentencePieceByteBPE2.positionencoding绝对位置编码ROPEAliBi相对位置编码Transformer-XLT5/TUPEDeBERTa3.注意力机制Mamba,H3,Hyena,RetNet,RWKV
- YOLOv9独家改进:一种高效移动应用的卷积加性自注意Vision Transformer
AI小怪兽
YOLOv9魔术师YOLOtransformer深度学习开发语言人工智能python
本文独家改进:轻量化改进之高效移动应用的卷积加性自注意VisionTransformer,构建了一个新颖且高效实现方式——卷积加性相似度函数,并提出了一种名为卷积加性标记混合器(CATM)的简化方法来降低计算开销《YOLOv9魔术师专栏》将从以下各个方向进行创新:【原创自研模块】【多组合点优化】【注意力机制】【卷积魔改】【block&多尺度融合结合】【损失&IOU优化】【上下采样优化】【SPPEL
- Unet改进10:在不同位置添加CPCA||通道先验卷积注意力机制
AICurator
Unet改进专栏深度学习神经网络unet语义分割
本文内容:在不同位置添加CPCA注意力机制目录论文简介1.步骤一2.步骤二3.步骤三4.步骤四论文简介低对比度和显著的器官形状变化等特征经常出现在医学图像中。现有注意机制的自适应能力普遍不足,限制了医学影像分割性能的提高。本文提出了一种有效的通道先验卷积注意(CPCA)方法,该方法支持通道和空间维度上注意权重的动态分布。通过采用多尺度深度卷积模块,有效地提取空间关系,同时保留先验通道。CPCA具有
- YOLOv8改进 | 注意力篇 | YOLOv8引入SimAM注意力机制
小李学AI
YOLOv8有效涨点专栏YOLO深度学习计算机视觉目标检测人工智能机器学习神经网络
1.SimAM介绍1.1摘要:在本文中,我们提出了一个概念上简单但非常有效的卷积神经网络(ConvNets)注意力模块。与现有的通道和空间注意力模块相比,我们的模块为层中的特征图推断3D注意力权重,而不向原始网络添加参数。具体来说,我们基于一些著名的神经科学理论,提出优化能量函数来找到每个神经元的重要性。我们进一步推导了能量函数的快速封闭式解决方案,并表明该解决方案可以用不到十行代码来实现。该模块
- YOLOv10改进 | 独家创新- 注意力篇 | YOLOv10引入结合EMAttention和ParNetAttention形成全新的EPA注意力机制和C2f_EPA(全网独家创新)
小李学AI
YOLOv10有效涨点专栏YOLO深度学习计算机视觉人工智能目标检测机器学习神经网络
1.EPAAttention介绍EPAAttention注意力机制综合了EMAttention和ParNetAttention的优势,能够更有效地提取图像特征。(1).综合性与多样性EPAAttention结合了两种不同的注意力机制,充分利用了EMAttention的分组归一化和特征增强能力,以及ParNetAttention的空间注意力和全局特征提取能力。通过这种多样化的组合,EPAAttent
- 大模型训练和推理
李明朔
AIGC深度学习人工智能
文章目录一、NLP基础1.Tokenizer2.positionencoding3.注意力机制与transformer架构二、大模型训练1.SFT训练2.RLHF训练3.分布式并行训练技术(1)模型并行(2)数据并行4.MoE技术4.PEFT训练5.上下文扩展技术三、大模型推理1.模型压缩(1)剪枝(2)量化2.显存优化技术3.调度优化技术4.请求优化技术5.采样和解码加速6.模型并行策略7.其他
- 爆改yolov8|利用BSAM改进YOLOv8,高效涨点
不想敲代码!!!
爆改yolov8即插即用YOLOyolov8目标检测人工智能深度学习
1,本文介绍BSAM基于CBAM进行改进,经实测在多个数据集上都有涨点。BSAM(BiLevelSpatialAttentionModule)是一个用于提升深度学习模型在空间特征处理中的能力的模块。它主要通过双层注意力机制来增强模型对重要空间信息的关注,从而提升任务性能。核心特点:双层空间注意力:BSAM结合了两个层次的注意力机制——全局和局部。全局注意力捕捉图像或特征图的整体信息,而局部注意力则
- 爆改YOLOv8 | yolov8添加MSDA注意力机制
不想敲代码!!!
爆改yolov8即插即用YOLO深度学习人工智能yolov8目标检测
1,本文介绍MSDA(多尺度扩张注意力)模块通过自注意力机制在不同尺度上有效地捕捉特征的稀疏性。它首先通过线性投影生成特征图(X)的查询、键和值。然后,将特征图的通道划分为(n)个头部,在每个头部中使用不同的扩张率进行多尺度的自注意力操作。具体来说,MSDA按以下步骤操作:对每个头部(i)进行自注意力处理,并将所有头部的输出连接在一起,之后通过线性层进行特征融合。通过为不同头部设置不同的扩张率,M
- 爆改YOLOv8 | yolov8添加GAM注意力机制
不想敲代码!!!
爆改yolov8即插即用YOLOyolov8目标检测人工智能计算机视觉
1,本文介绍GAM(GlobalAttentionMechanism)旨在改进传统注意力机制的不足,特别是在通道和空间维度上的信息保留问题。它通过顺序的通道-空间注意力机制来解决这些问题。以下是GAM的关键设计和实现细节:通道注意力子模块:3D排列:使用3D排列来在三个维度上保留信息,这种方法有助于捕捉更多维度的特征。两层MLP:通过一个两层的多层感知机(MLP)增强跨维度的通道-空间依赖性,提升
- 基于霜冰优化算法(RIME)优化CNN-BiGUR-Attention风电功率预测研究(Matlab代码实现)
程序辅导帮
算法cnnmatlab
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录⛳️赠与读者1概述一、研究背景与意义二、技术概述1.霜冰优化算法(RIME)2.卷积神经网络(CNN)3.双向门控循环单元(BiGRU)4.注意力机制(AttentionMechanism)三、研究内容与方法四、预期成果与贡献五、结论与展望2运行结果3参考文献4Mat
- 语音识别技能汇总
语音不识别
语音识别语音识别人工智能linuxpython
语音识别技能汇总常见问题汇总importwarningswarnings.filterwarnings('ignore')基础知识Attention-注意力机制原理:人在说话的时候或者读取文字的时候,是根据某个关键字或者多个关键字来判断某些句子或者说话内容的含义的。即通过对上下文的内容增加不同的权重,可以实现这样对局部内容关注更多。常用语音识别工具相关包的安装pipinstallpygameSpe
- Python深度学习:构建下一代智能系统
2401_83402415
pythonpython深度学习开发语言Transformer模型目标检测算法Attention
近年来,伴随着以卷积神经网络(CNN)为代表的深度学习的快速发展,人工智能迈入了第三次发展浪潮,AI技术在各个领域中的应用越来越广泛。为了帮助广大学员更加深入地学习人工智能领域最近3-5年的新理论与新技术,本文讲解注意力机制、Transformer模型(BERT、GPT-1/2/3/3.5/4、DETR、ViT、SwinTransformer等)、生成式模型(变分自编码器VAE、生成式对抗网络GA
- xml解析
小猪猪08
xml
1、DOM解析的步奏
准备工作:
1.创建DocumentBuilderFactory的对象
2.创建DocumentBuilder对象
3.通过DocumentBuilder对象的parse(String fileName)方法解析xml文件
4.通过Document的getElem
- 每个开发人员都需要了解的一个SQL技巧
brotherlamp
linuxlinux视频linux教程linux自学linux资料
对于数据过滤而言CHECK约束已经算是相当不错了。然而它仍存在一些缺陷,比如说它们是应用到表上面的,但有的时候你可能希望指定一条约束,而它只在特定条件下才生效。
使用SQL标准的WITH CHECK OPTION子句就能完成这点,至少Oracle和SQL Server都实现了这个功能。下面是实现方式:
CREATE TABLE books (
id &
- Quartz——CronTrigger触发器
eksliang
quartzCronTrigger
转载请出自出处:http://eksliang.iteye.com/blog/2208295 一.概述
CronTrigger 能够提供比 SimpleTrigger 更有具体实际意义的调度方案,调度规则基于 Cron 表达式,CronTrigger 支持日历相关的重复时间间隔(比如每月第一个周一执行),而不是简单的周期时间间隔。 二.Cron表达式介绍 1)Cron表达式规则表
Quartz
- Informatica基础
18289753290
InformaticaMonitormanagerworkflowDesigner
1.
1)PowerCenter Designer:设计开发环境,定义源及目标数据结构;设计转换规则,生成ETL映射。
2)Workflow Manager:合理地实现复杂的ETL工作流,基于时间,事件的作业调度
3)Workflow Monitor:监控Workflow和Session运行情况,生成日志和报告
4)Repository Manager:
- linux下为程序创建启动和关闭的的sh文件,scrapyd为例
酷的飞上天空
scrapy
对于一些未提供service管理的程序 每次启动和关闭都要加上全部路径,想到可以做一个简单的启动和关闭控制的文件
下面以scrapy启动server为例,文件名为run.sh:
#端口号,根据此端口号确定PID
PORT=6800
#启动命令所在目录
HOME='/home/jmscra/scrapy/'
#查询出监听了PORT端口
- 人--自私与无私
永夜-极光
今天上毛概课,老师提出一个问题--人是自私的还是无私的,根源是什么?
从客观的角度来看,人有自私的行为,也有无私的
- Ubuntu安装NS-3 环境脚本
随便小屋
ubuntu
将附件下载下来之后解压,将解压后的文件ns3environment.sh复制到下载目录下(其实放在哪里都可以,就是为了和我下面的命令相统一)。输入命令:
sudo ./ns3environment.sh >>result
这样系统就自动安装ns3的环境,运行的结果在result文件中,如果提示
com
- 创业的简单感受
aijuans
创业的简单感受
2009年11月9日我进入a公司实习,2012年4月26日,我离开a公司,开始自己的创业之旅。
今天是2012年5月30日,我忽然很想谈谈自己创业一个月的感受。
当初离开边锋时,我就对自己说:“自己选择的路,就是跪着也要把他走完”,我也做好了心理准备,准备迎接一次次的困难。我这次走出来,不管成败
- 如何经营自己的独立人脉
aoyouzi
如何经营自己的独立人脉
独立人脉不是父母、亲戚的人脉,而是自己主动投入构造的人脉圈。“放长线,钓大鱼”,先行投入才能产生后续产出。 现在几乎做所有的事情都需要人脉。以银行柜员为例,需要拉储户,而其本质就是社会人脉,就是社交!很多人都说,人脉我不行,因为我爸不行、我妈不行、我姨不行、我舅不行……我谁谁谁都不行,怎么能建立人脉?我这里说的人脉,是你的独立人脉。 以一个普通的银行柜员
- JSP基础
百合不是茶
jsp注释隐式对象
1,JSP语句的声明
<%! 声明 %> 声明:这个就是提供java代码声明变量、方法等的场所。
表达式 <%= 表达式 %> 这个相当于赋值,可以在页面上显示表达式的结果,
程序代码段/小型指令 <% 程序代码片段 %>
2,JSP的注释
<!-- -->
- web.xml之session-config、mime-mapping
bijian1013
javaweb.xmlservletsession-configmime-mapping
session-config
1.定义:
<session-config>
<session-timeout>20</session-timeout>
</session-config>
2.作用:用于定义整个WEB站点session的有效期限,单位是分钟。
mime-mapping
1.定义:
<mime-m
- 互联网开放平台(1)
Bill_chen
互联网qq新浪微博百度腾讯
现在各互联网公司都推出了自己的开放平台供用户创造自己的应用,互联网的开放技术欣欣向荣,自己总结如下:
1.淘宝开放平台(TOP)
网址:http://open.taobao.com/
依赖淘宝强大的电子商务数据,将淘宝内部业务数据作为API开放出去,同时将外部ISV的应用引入进来。
目前TOP的三条主线:
TOP访问网站:open.taobao.com
ISV后台:my.open.ta
- 【MongoDB学习笔记九】MongoDB索引
bit1129
mongodb
索引
可以在任意列上建立索引
索引的构造和使用与传统关系型数据库几乎一样,适用于Oracle的索引优化技巧也适用于Mongodb
使用索引可以加快查询,但同时会降低修改,插入等的性能
内嵌文档照样可以建立使用索引
测试数据
var p1 = {
"name":"Jack",
"age&q
- JDBC常用API之外的总结
白糖_
jdbc
做JAVA的人玩JDBC肯定已经很熟练了,像DriverManager、Connection、ResultSet、Statement这些基本类大家肯定很常用啦,我不赘述那些诸如注册JDBC驱动、创建连接、获取数据集的API了,在这我介绍一些写框架时常用的API,大家共同学习吧。
ResultSetMetaData获取ResultSet对象的元数据信息
- apache VelocityEngine使用记录
bozch
VelocityEngine
VelocityEngine是一个模板引擎,能够基于模板生成指定的文件代码。
使用方法如下:
VelocityEngine engine = new VelocityEngine();// 定义模板引擎
Properties properties = new Properties();// 模板引擎属
- 编程之美-快速找出故障机器
bylijinnan
编程之美
package beautyOfCoding;
import java.util.Arrays;
public class TheLostID {
/*编程之美
假设一个机器仅存储一个标号为ID的记录,假设机器总量在10亿以下且ID是小于10亿的整数,假设每份数据保存两个备份,这样就有两个机器存储了同样的数据。
1.假设在某个时间得到一个数据文件ID的列表,是
- 关于Java中redirect与forward的区别
chenbowen00
javaservlet
在Servlet中两种实现:
forward方式:request.getRequestDispatcher(“/somePage.jsp”).forward(request, response);
redirect方式:response.sendRedirect(“/somePage.jsp”);
forward是服务器内部重定向,程序收到请求后重新定向到另一个程序,客户机并不知
- [信号与系统]人体最关键的两个信号节点
comsci
系统
如果把人体看做是一个带生物磁场的导体,那么这个导体有两个很重要的节点,第一个在头部,中医的名称叫做 百汇穴, 另外一个节点在腰部,中医的名称叫做 命门
如果要保护自己的脑部磁场不受到外界有害信号的攻击,最简单的
- oracle 存储过程执行权限
daizj
oracle存储过程权限执行者调用者
在数据库系统中存储过程是必不可少的利器,存储过程是预先编译好的为实现一个复杂功能的一段Sql语句集合。它的优点我就不多说了,说一下我碰到的问题吧。我在项目开发的过程中需要用存储过程来实现一个功能,其中涉及到判断一张表是否已经建立,没有建立就由存储过程来建立这张表。
CREATE OR REPLACE PROCEDURE TestProc
IS
fla
- 为mysql数据库建立索引
dengkane
mysql性能索引
前些时候,一位颇高级的程序员居然问我什么叫做索引,令我感到十分的惊奇,我想这绝不会是沧海一粟,因为有成千上万的开发者(可能大部分是使用MySQL的)都没有受过有关数据库的正规培训,尽管他们都为客户做过一些开发,但却对如何为数据库建立适当的索引所知较少,因此我起了写一篇相关文章的念头。 最普通的情况,是为出现在where子句的字段建一个索引。为方便讲述,我们先建立一个如下的表。
- 学习C语言常见误区 如何看懂一个程序 如何掌握一个程序以及几个小题目示例
dcj3sjt126com
c算法
如果看懂一个程序,分三步
1、流程
2、每个语句的功能
3、试数
如何学习一些小算法的程序
尝试自己去编程解决它,大部分人都自己无法解决
如果解决不了就看答案
关键是把答案看懂,这个是要花很大的精力,也是我们学习的重点
看懂之后尝试自己去修改程序,并且知道修改之后程序的不同输出结果的含义
照着答案去敲
调试错误
- centos6.3安装php5.4报错
dcj3sjt126com
centos6
报错内容如下:
Resolving Dependencies
--> Running transaction check
---> Package php54w.x86_64 0:5.4.38-1.w6 will be installed
--> Processing Dependency: php54w-common(x86-64) = 5.4.38-1.w6 for
- JSONP请求
flyer0126
jsonp
使用jsonp不能发起POST请求。
It is not possible to make a JSONP POST request.
JSONP works by creating a <script> tag that executes Javascript from a different domain; it is not pos
- Spring Security(03)——核心类简介
234390216
Authentication
核心类简介
目录
1.1 Authentication
1.2 SecurityContextHolder
1.3 AuthenticationManager和AuthenticationProvider
1.3.1 &nb
- 在CentOS上部署JAVA服务
java--hhf
javajdkcentosJava服务
本文将介绍如何在CentOS上运行Java Web服务,其中将包括如何搭建JAVA运行环境、如何开启端口号、如何使得服务在命令执行窗口关闭后依旧运行
第一步:卸载旧Linux自带的JDK
①查看本机JDK版本
java -version
结果如下
java version "1.6.0"
- oracle、sqlserver、mysql常用函数对比[to_char、to_number、to_date]
ldzyz007
oraclemysqlSQL Server
oracle &n
- 记Protocol Oriented Programming in Swift of WWDC 2015
ningandjin
protocolWWDC 2015Swift2.0
其实最先朋友让我就这个题目写篇文章的时候,我是拒绝的,因为觉得苹果就是在炒冷饭, 把已经流行了数十年的OOP中的“面向接口编程”还拿来讲,看完整个Session之后呢,虽然还是觉得在炒冷饭,但是毕竟还是加了蛋的,有些东西还是值得说说的。
通常谈到面向接口编程,其主要作用是把系统设计和具体实现分离开,让系统的每个部分都可以在不影响别的部分的情况下,改变自身的具体实现。接口的设计就反映了系统
- 搭建 CentOS 6 服务器(15) - Keepalived、HAProxy、LVS
rensanning
keepalived
(一)Keepalived
(1)安装
# cd /usr/local/src
# wget http://www.keepalived.org/software/keepalived-1.2.15.tar.gz
# tar zxvf keepalived-1.2.15.tar.gz
# cd keepalived-1.2.15
# ./configure
# make &a
- ORACLE数据库SCN和时间的互相转换
tomcat_oracle
oraclesql
SCN(System Change Number 简称 SCN)是当Oracle数据库更新后,由DBMS自动维护去累积递增的一个数字,可以理解成ORACLE数据库的时间戳,从ORACLE 10G开始,提供了函数可以实现SCN和时间进行相互转换;
用途:在进行数据库的还原和利用数据库的闪回功能时,进行SCN和时间的转换就变的非常必要了;
操作方法: 1、通过dbms_f
- Spring MVC 方法注解拦截器
xp9802
spring mvc
应用场景,在方法级别对本次调用进行鉴权,如api接口中有个用户唯一标示accessToken,对于有accessToken的每次请求可以在方法加一个拦截器,获得本次请求的用户,存放到request或者session域。
python中,之前在python flask中可以使用装饰器来对方法进行预处理,进行权限处理
先看一个实例,使用@access_required拦截:
?