# 主要的数据处理方法
all_data = read_and_generate_dataset(graph_signal_matrix_filename,
num_of_weeks,
num_of_days,
num_of_hours,
num_for_predict,
points_per_hour,
merge)
在加载数据后经过取sample之后分成了week_sample,day_sample,hour_sample和target四个部分,然后前三个变换了轴,最后target取三维特征中的第一维flow存放在all_sample中。
def read_and_generate_dataset(graph_signal_matrix_filename,
num_of_weeks, num_of_days,
num_of_hours, num_for_predict,
points_per_hour=12, merge=False):
"""
图信号矩阵文件进行处理,提取出模型需要的X,Y,最后返回一个dict,包含训练集、验证集、测试集,每部分的均值方差数,如key=train,value={week:[];day:[];recent:[];target:[]}
:param graph_signal_matrix_filename: 图矩阵文件
:param num_of_weeks: 自定义关联周数
:param num_of_days: 自定义关联天数
:param num_of_hours: 自定义关进最近小时数
:param num_for_predict: 自定义预测周期,12就是一小时
:param points_per_hour: 图数据文件决定。一小时有12次数据
:param merge: 是否合并训练集和验证集共同训练模型,最终数据按照6:2:2 划为训练集、验证集、测试集三部分,
若mergr=Ture,用于训练的training_set=训练集+验证集,validation_set=验证集(不变)
:return: dict,返回进行标准化的数据,以及标准化用到的均值和方差
"""
'''
Parameters
----------
graph_signal_matrix_filename: str, path of graph signal matrix file
num_of_weeks, num_of_days, num_of_hours: int
num_for_predict: int
points_per_hour: int, default 12, depends on data
merge: boolean, default False,
whether to merge training set and validation set to train model
Returns
----------
feature: np.ndarray,
shape is (num_of_samples, num_of_batches * points_per_hour,
num_of_vertices, num_of_features)
target: np.ndarray,
shape is (num_of_samples, num_of_vertices, num_for_predict)
'''
# 加载.npz文件,图信号数据文件 pems04.npz,返回的是一个'numpy.ndarray'
data_seq = np.load(graph_signal_matrix_filename)['data']
all_samples = []
for idx in range(data_seq.shape[0]):
sample = get_sample_indices(data_seq, num_of_weeks, num_of_days,
num_of_hours, idx, num_for_predict,
points_per_hour)
if not sample:
continue
week_sample, day_sample, hour_sample, target = sample
# 进行了一个transpose [1,12,307,3]变为[1,307,3,12] ,1是扩维的,12表示一个周期的数据,weeks=1,如果是hours=3,此时应该是36
# target[:, :, 0, :]只取了第一个特征作为预测值flow,原来是[1,307,3,12],在第3维上只要第一个值变为
# all_samples=[(week[1,307,3,12],day[1,307,3,12],hour[1,307,3,36],target[1,307,12]),(1,307,1,12)]
all_samples.append((
np.expand_dims(week_sample, axis=0).transpose((0, 2, 3, 1)),
np.expand_dims(day_sample, axis=0).transpose((0, 2, 3, 1)),
np.expand_dims(hour_sample, axis=0).transpose((0, 2, 3, 1)),
np.expand_dims(target, axis=0).transpose((0, 2, 3, 1))[:, :, 0, :]
))
# all_sample:list 14965=16992-2016-11 有14965条可训练或验证或测试的数据
# 每一条数据都是一个4元元组,(weeks_data(1,307,3,12 ~一周),day_data(1,307,3,12 ~一天),hour_data(1,307,3,36 ~3小时),target(1,307,12 3维特征只要第一维的))
split_line1 = int(len(all_samples) * 0.6)
split_line2 = int(len(all_samples) * 0.8)
if not merge:
training_set = [np.concatenate(i, axis=0)
for i in zip(*all_samples[:split_line1])]
else:
print('Merge training set and validation set!')
training_set = [np.concatenate(i, axis=0)
for i in zip(*all_samples[:split_line2])]
validation_set = [np.concatenate(i, axis=0)
for i in zip(*all_samples[split_line1: split_line2])]
testing_set = [np.concatenate(i, axis=0)
for i in zip(*all_samples[split_line2:])]
# testing_set=[(2993,307,3,12),(2993,307,3,12),(2993,307,3,36),(2993,307,12)] [周数据,天数据,小时数据,target]
# validation_set=[(2993,307,3,12),(2993,307,3,12),(2993,307,3,36),(2993,307,12)]
# training_set=[(11972或8979,307,3,12),(11972或8979,307,3,36),(11972或8979,307,3,12),(11972或8979,307,12)]
train_week, train_day, train_hour, train_target = training_set
val_week, val_day, val_hour, val_target = validation_set
test_week, test_day, test_hour, test_target = testing_set
print('training data: week: {}, day: {}, recent: {}, target: {}'.format(
train_week.shape, train_day.shape,
train_hour.shape, train_target.shape))
print('validation data: week: {}, day: {}, recent: {}, target: {}'.format(
val_week.shape, val_day.shape, val_hour.shape, val_target.shape))
print('testing data: week: {}, day: {}, recent: {}, target: {}'.format(
test_week.shape, test_day.shape, test_hour.shape, test_target.shape))
# 进行标准化,normalization返回第一个元素是{'mean': mean, 'std': std}
(week_stats, train_week_norm,
val_week_norm, test_week_norm) = normalization(train_week,
val_week,
test_week)
(day_stats, train_day_norm,
val_day_norm, test_day_norm) = normalization(train_day,
val_day,
test_day)
(recent_stats, train_recent_norm,
val_recent_norm, test_recent_norm) = normalization(train_hour,
val_hour,
test_hour)
all_data = {
'train': {
'week': train_week_norm,
'day': train_day_norm,
'recent': train_recent_norm,
'target': train_target,
},
'val': {
'week': val_week_norm,
'day': val_day_norm,
'recent': val_recent_norm,
'target': val_target
},
'test': {
'week': test_week_norm,
'day': test_day_norm,
'recent': test_recent_norm,
'target': test_target
},
'stats': {
'week': week_stats,
'day': day_stats,
'recent': recent_stats
}
}
return all_data
def get_sample_indices(data_sequence, num_of_weeks, num_of_days, num_of_hours,
label_start_idx, num_for_predict, points_per_hour=12):
"""
提取出每个片段对应的week,day,recent,每个片段是Y,对应的recent等,一起作为X
:param data_sequence: 读取的全部图矩阵数据
:param num_of_weeks:
:param num_of_days:
:param num_of_hours:
:param label_start_idx: 第一个可以作为训练测试样本的数据开始index
:param num_for_predict:
:param points_per_hour:
:return: 返回一个target对应的周数据、天数据、最近数据
week_sample=[12,307,3], day_sample=[12,307,3], hour_sample=[12*3,307,3], target=[12.307.3]
"""
'''
Parameters
----------
data_sequence: np.ndarray
shape is (sequence_length, num_of_vertices, num_of_features)
num_of_weeks, num_of_days, num_of_hours: int
label_start_idx: int, the first index of predicting target
num_for_predict: int,
the number of points will be predicted for each sample
points_per_hour: int, default 12, number of points per hour
Returns
----------
week_sample: np.ndarray
shape is (num_of_weeks * points_per_hour,
num_of_vertices, num_of_features)
day_sample: np.ndarray
shape is (num_of_days * points_per_hour,
num_of_vertices, num_of_features)
hour_sample: np.ndarray
shape is (num_of_hours * points_per_hour,
num_of_vertices, num_of_features)
target: np.ndarray
shape is (num_for_predict, num_of_vertices, num_of_features)
'''
week_indices = search_data(data_sequence.shape[0], num_of_weeks,
label_start_idx, num_for_predict,
7 * 24, points_per_hour)
if not week_indices:
return None
day_indices = search_data(data_sequence.shape[0], num_of_days,
label_start_idx, num_for_predict,
24, points_per_hour)
if not day_indices:
return None
hour_indices = search_data(data_sequence.shape[0], num_of_hours,
label_start_idx, num_for_predict,
1, points_per_hour)
if not hour_indices:
return None
week_sample = np.concatenate([data_sequence[i: j]
for i, j in week_indices], axis=0)
day_sample = np.concatenate([data_sequence[i: j]
for i, j in day_indices], axis=0)
hour_sample = np.concatenate([data_sequence[i: j]
for i, j in hour_indices], axis=0)
target = data_sequence[label_start_idx: label_start_idx + num_for_predict]
print('获取每个片段对应的关联片段,week,day,recent:')
print('currint index:',label_start_idx)
print('week_indices:',week_indices)
print('day_indices:', day_indices)
print('hour_indices:', hour_indices)
print(' ')
print('week_sample:',week_sample.shape)
print('day_sample:',day_sample.shape)
print('hour_sample:',hour_sample.shape)
print('target:',target.shape)
return week_sample, day_sample, hour_sample, target
def search_data(sequence_length, num_of_batches, label_start_idx,
num_for_predict, units, points_per_hour):
"""
:param sequence_length:
:param num_of_batches: recent,day,week取的周期数,在配置文件中设置的,int
:param label_start_idx: 能被作为训练测试集的片段的开始index,这里是遍历的,从0开始判断
:param num_for_predict:
:param units:
:param points_per_hour:
:return: 返回一个list,其中元素数目是配置文件中设置的关联个数,如week=1,就是一个二元元组[(0,12)],
元组的第一个数字表示开始索引,后一个是结束索引=start_idx+num_for_predict
"""
'''
Parameters
----------
sequence_length: int, length of all history data
num_of_batches: int, the number of batches will be used for training
label_start_idx: int, the first index of predicting target
num_for_predict: int,
the number of points will be predicted for each sample
units: int, week: 7 * 24, day: 24, recent(hour): 1
points_per_hour: int, number of points per hour, depends on data
Returns
----------
list[(start_idx, end_idx)]
'''
if points_per_hour < 0:
raise ValueError("points_per_hour should be greater than 0!")
# 最后一条数据的Index+片段长度不能超过总序列长度
if label_start_idx + num_for_predict > sequence_length:
return None
x_idx = []
for i in range(1, num_of_batches + 1):
start_idx = label_start_idx - points_per_hour * units * i
end_idx = start_idx + num_for_predict
if start_idx >= 0:
x_idx.append((start_idx, end_idx))
else:
return None
if len(x_idx) != num_of_batches:
return None
return x_idx[::-1]
将testing_set中target部分数据进行transpose和reshape,由(2993,307,12) ,变为(2993,3684)
# test set ground truth true_value=(2993,3684)
true_value = (all_data['test']['target'].transpose((0, 2, 1))
.reshape(all_data['test']['target'].shape[0], -1))
注意:1. 多GPU怎么处理?
# training set data loader
train_loader = gluon.data.DataLoader(
gluon.data.ArrayDataset(
nd.array(all_data['train']['week'], ctx=ctx),
nd.array(all_data['train']['day'], ctx=ctx),
nd.array(all_data['train']['recent'], ctx=ctx),
nd.array(all_data['train']['target'], ctx=ctx)
),
batch_size=batch_size,
shuffle=True
)
# validation set data loader
val_loader = gluon.data.DataLoader(
gluon.data.ArrayDataset(
nd.array(all_data['val']['week'], ctx=ctx),
nd.array(all_data['val']['day'], ctx=ctx),
nd.array(all_data['val']['recent'], ctx=ctx),
nd.array(all_data['val']['target'], ctx=ctx)
),
batch_size=batch_size,
shuffle=False
)
# testing set data loader
test_loader = gluon.data.DataLoader(
gluon.data.ArrayDataset(
nd.array(all_data['test']['week'], ctx=ctx),
nd.array(all_data['test']['day'], ctx=ctx),
nd.array(all_data['test']['recent'], ctx=ctx),
nd.array(all_data['test']['target'], ctx=ctx)
),
batch_size=batch_size,
shuffle=False
)
# save Z-score mean and std
stats_data = {}
for type_ in ['week', 'day', 'recent']:
stats = all_data['stats'][type_]
stats_data[type_ + '_mean'] = stats['mean']
stats_data[type_ + '_std'] = stats['std']
# 以压缩的.npz 格式将多个数组保存到一个文件中
# 要保存到文件的数组。每个数组都将以其对应的关键字名称保存到输出文件中,字典形式
np.savez_compressed(
os.path.join(params_path, 'stats_data'),
**stats_data
)
注意:1. 是否可以换其他的计算损失方法?这个是最优的吗?
# loss function MSE
loss_function = gluon.loss.L2Loss()
注意:1. 模型结构; 2. 多GPU 3. 模型输入输出;3. get_backbones函数弄明白;4. 模型参数初始化
all_backbones = get_backbones(args.config, adj_filename, ctx)
net = model(num_for_predict, all_backbones)
net.initialize(ctx=ctx)
for val_w, val_d, val_r, val_t in val_loader:
net([val_w, val_d, val_r])
break
net.initialize(ctx=ctx, init=MyInit(), force_reinit=True)
# initialize a trainer to train model
trainer = gluon.Trainer(net.collect_params(), optimizer,
{'learning_rate': learning_rate})
# initialize a SummaryWriter to write information into logs dir
sw = SummaryWriter(logdir=params_path, flush_secs=5)
# compute validation loss before training
compute_val_loss(net, val_loader, loss_function, sw, epoch=0)
# compute testing set MAE, RMSE, MAPE before training
evaluate(net, test_loader, true_value, num_of_vertices, sw, epoch=0)
注意:1. 分析下evaluate方法
# train model
global_step = 1
for epoch in range(1, epochs + 1):
for train_w, train_d, train_r, train_t in train_loader:
start_time = time()
with autograd.record():
output = net([train_w, train_d, train_r])
print('模型输出:',len(output),len(output[0]),len(output[0][0])) #(batch_size,307,12)
print('每一个传感器的输出:',output[0][0]) # 与配置文件中的num_for_predict一致
l = loss_function(output, train_t)
l.backward()
trainer.step(train_t.shape[0])
training_loss = l.mean().asscalar()
sw.add_scalar(tag='training_loss',
value=training_loss,
global_step=global_step)
print('global step: %s, training loss: %.2f, time: %.2fs'
% (global_step, training_loss, time() - start_time))
global_step += 1
# logging the gradients of parameters for checking convergence
for name, param in net.collect_params().items():
try:
sw.add_histogram(tag=name + "_grad",
values=param.grad(),
global_step=global_step,
bins=1000)
except:
print("can't plot histogram of {}_grad".format(name))
# compute validation loss
# 训练完一个epoch后,计算验证集的损失
compute_val_loss(net, val_loader, loss_function, sw, epoch)
# evaluate the model on testing set
# 训练完一个epoch后,对测试集再进行预测,及结果评估
evaluate(net, test_loader, true_value, num_of_vertices, sw, epoch)
params_filename = os.path.join(params_path,
'%s_epoch_%s.params' % (model_name,
epoch))
net.save_parameters(params_filename)
print('save parameters to file: %s' % (params_filename))
# close SummaryWriter
sw.close()
注意:1. 分析下predict方法;2. 取testLoader中小部分试试;3. 加载模型的方法,gpu,cpu,多gpu等等
# 所有epoch训练结束后,如果需要对测试集进行测试,就将结果保存到prediction_filename中
if 'prediction_filename' in training_config:
prediction_path = training_config['prediction_filename']
prediction = predict(net, test_loader)
np.savez_compressed(
os.path.normpath(prediction_path),
prediction=prediction,
ground_truth=all_data['test']['target']
)