【案例分享】跨机房ES同步实战

背景

众所周知单个机房在出现不可抗拒的问题(如断电、断网等因素)时,会导致无法正常提供服务,会对业务造成潜在的损失。所以在协同办公领域,一种可以基于同城或异地多活机制的高可用设计,在保障数据一致性的同时,能够最大程度降低由于机房的仅单点可用所导致的潜在高可用问题,最大程度上保障业务的用户体验,降低单点问题对业务造成的潜在损失显得尤为重要。

同城双活,对于生产的高可用保障,重大的意义和价值是不可言喻的。表面上同城双活只是简单的部署了一套生产环境而已,但是在架构上,这个改变的影响是巨大的,无状态应用的高可用管理、请求流量的管理、版本发布的管理、网络架构的管理等,其提升的架构复杂度巨大。

结合真实的协同办公产品:京办(为北京市政府提供协同办公服务的综合性平台)生产环境面对的复杂的政务网络以及京办同城双活架构演进的案例,给大家介绍下京办持续改进、分阶段演进过程中的一些思考和实践经验的总结。本文仅针对ES集群在跨机房同步过程中的方案和经验进行介绍和总结。

架构

1.部署Logstash在金山云机房上,Logstash启动多个实例(按不同的类型分类,提高同步效率),并且和金山云机房的ES集群在相同的VPC

2.Logstash需要配置大网访问权限,保证Logstash和ES原集群和目标集群互通。

3.数据迁移可以全量迁移和增量迁移,首次迁移都是全量迁移后续的增加数据选择增量迁移。

4.增量迁移需要改造增加识别的增量数据的标识,具体方法后续进行介绍。



【案例分享】跨机房ES同步实战_第1张图片



原理

Logstash工作原理



【案例分享】跨机房ES同步实战_第2张图片



Logstash分为三个部分input 、filter、ouput:

1.input处理接收数据,数据可以来源ES,日志文件,kafka等通道.

2.filter对数据进行过滤,清洗。

3.ouput输出数据到目标设备,可以输出到ES,kafka,文件等。

增量同步原理

1. 对于T时刻的数据,先使用Logstash将T以前的所有数据迁移到有孚机房京东云ES,假设用时∆T

2. 对于T到T+∆T的增量数据,再次使用logstash将数据导入到有孚机房京东云的ES集群

3. 重复上述步骤2,直到∆T足够小,此时将业务切换到华为云,最后完成新增数据的迁移

适用范围:ES的数据中带有时间戳或者其他能够区分新旧数据的标签

流程



【案例分享】跨机房ES同步实战_第3张图片



准备工作

1.创建ECS和安装JDK忽略,自行安装即可

2.下载对应版本的Logstash,尽量选择与Elasticsearch版本一致,或接近的版本安装即可

Download Logstash Free | Get Started Now | Elastic

1) 源码下载直接解压安装包,开箱即用

2)修改对内存使用,logstash默认的堆内存是1G,根据ECS集群选择合适的内存,可以加快集群数据的迁移效率。



【案例分享】跨机房ES同步实战_第4张图片



3. 迁移索引

Logstash会帮助用户自动创建索引,但是自动创建的索引和用户本身的索引会有些许差异,导致最终数据的搜索格式不一致,一般索引需要手动创建,保证索引的数据完全一致。

以下提供创建索引的python脚本,用户可以使用该脚本创建需要的索引。

create_mapping.py文件是同步索引的python脚本,config.yaml是集群地址配置文件。

注:使用该脚本需要安装相关依赖

yum install -y PyYAML
yum install -y python-requests

拷贝以下代码保存为 create_mapping.py:

import yaml
import requests
import json
import getopt
import sys

def help():
    print
    """
    usage:
    -h/--help print this help.
    -c/--config config file path, default is config.yaml
    
    example:  
    python create_mapping.py -c config.yaml 
    """
def process_mapping(index_mapping, dest_index):
    print(index_mapping)
    # remove unnecessary keys
    del index_mapping["settings"]["index"]["provided_name"]
    del index_mapping["settings"]["index"]["uuid"]
    del index_mapping["settings"]["index"]["creation_date"]
    del index_mapping["settings"]["index"]["version"]

    # check alias
    aliases = index_mapping["aliases"]
    for alias in list(aliases.keys()):
        if alias == dest_index:
            print(
                "source index " + dest_index + " alias " + alias + " is the same as dest_index name, will remove this alias.")
            del index_mapping["aliases"][alias]
    if index_mapping["settings"]["index"].has_key("lifecycle"):
        lifecycle = index_mapping["settings"]["index"]["lifecycle"]
        opendistro = {"opendistro": {"index_state_management":
                                         {"policy_id": lifecycle["name"],
                                          "rollover_alias": lifecycle["rollover_alias"]}}}
        index_mapping["settings"].update(opendistro)
        # index_mapping["settings"]["opendistro"]["index_state_management"]["rollover_alias"] = lifecycle["rollover_alias"]
        del index_mapping["settings"]["index"]["lifecycle"]
    print(index_mapping)
    return index_mapping
def put_mapping_to_target(url, mapping, source_index, dest_auth=None):
    headers = {'Content-Type': 'application/json'}
    create_resp = requests.put(url, headers=headers, data=json.dumps(mapping), auth=dest_auth)
    if create_resp.status_code != 200:
        print(
            "create index " + url + " failed with response: " + str(create_resp) + ", source index is " + source_index)
        print(create_resp.text)
        with open(source_index + ".json", "w") as f:
            json.dump(mapping, f)
def main():
    config_yaml = "config.yaml"
    opts, args = getopt.getopt(sys.argv[1:], '-h-c:', ['help', 'config='])
    for opt_name, opt_value in opts:
        if opt_name in ('-h', '--help'):
            help()
            exit()
        if opt_name in ('-c', '--config'):
            config_yaml = opt_value

    config_file = open(config_yaml)
    config = yaml.load(config_file)
    source = config["source"]
    source_user = config["source_user"]
    source_passwd = config["source_passwd"]
    source_auth = None
    if source_user != "":
        source_auth = (source_user, source_passwd)
    dest = config["destination"]
    dest_user = config["destination_user"]
    dest_passwd = config["destination_passwd"]
    dest_auth = None
    if dest_user != "":
        dest_auth = (dest_user, dest_passwd)
    print(source_auth)
    print(dest_auth)

    # only deal with mapping list
    if config["only_mapping"]:
        for source_index, dest_index in config["mapping"].iteritems():
            print("start to process source index" + source_index + ", target index: " + dest_index)
            source_url = source + "/" + source_index
            response = requests.get(source_url, auth=source_auth)
            if response.status_code != 200:
                print("*** get ElasticSearch message failed. resp statusCode:" + str(
                    response.status_code) + " response is " + response.text)
                continue
            mapping = response.json()
            index_mapping = process_mapping(mapping[source_index], dest_index)

            dest_url = dest + "/" + dest_index
            put_mapping_to_target(dest_url, index_mapping, source_index, dest_auth)
            print("process source index " + source_index + " to target index " + dest_index + " successed.")
    else:
        # get all indices
        response = requests.get(source + "/_alias", auth=source_auth)
        if response.status_code != 200:
            print("*** get all index failed. resp statusCode:" + str(
                response.status_code) + " response is " + response.text)
            exit()
        all_index = response.json()
        for index in list(all_index.keys()):
            if "." in index:
                continue
            print("start to process source index" + index)
            source_url = source + "/" + index
            index_response = requests.get(source_url, auth=source_auth)
            if index_response.status_code != 200:
                print("*** get ElasticSearch message failed. resp statusCode:" + str(
                    index_response.status_code) + " response is " + index_response.text)
                continue
            mapping = index_response.json()

            dest_index = index
            if index in config["mapping"].keys():
                dest_index = config["mapping"][index]
            index_mapping = process_mapping(mapping[index], dest_index)

            dest_url = dest + "/" + dest_index
            put_mapping_to_target(dest_url, index_mapping, index, dest_auth)
            print("process source index " + index + " to target index " + dest_index + " successed.")

if __name__ == '__main__':
    main()

配置文件保存为config.yaml:

# 源端ES集群地址,加上http://
source: http://ip:port
source_user: "username"
source_passwd: "password"
# 目的端ES集群地址,加上http://
destination: http://ip:port
destination_user: "username"
destination_passwd: "password"

# 是否只处理这个文件中mapping地址的索引
# 如果设置成true,则只会将下面的mapping中的索引获取到并在目的端创建
# 如果设置成false,则会取源端集群的所有索引,除去(.kibana)
# 并且将索引名称与下面的mapping匹配,如果匹配到使用mapping的value作为目的端的索引名称
# 如果匹配不到,则使用源端原始的索引名称
only_mapping: true

# 要迁移的索引,key为源端的索引名字,value为目的端的索引名字
mapping:
    source_index: dest_index

以上代码和配置文件准备完成,直接执行 python create_mapping.py 即可完成索引同步。

索引同步完成可以取目标集群的kibana上查看或者执行curl查看索引迁移情况:

GET _cat/indices?v

【案例分享】跨机房ES同步实战_第5张图片

 



全量迁移

Logstash配置位于config目录下。

用户可以参考配置修改Logstash配置文件,为了保证迁移数据的准确性,一般建议建立多组Logstash,分批次迁移数据,每个Logstash迁移部分数据。

配置集群间迁移配置参考:







input{
    elasticsearch{
        # 源端地址
        hosts =>  ["ip1:port1","ip2:port2"]
        # 安全集群配置登录用户名密码
        user => "username"
        password => "password"
        # 需要迁移的索引列表,以逗号分隔,支持通配符
        index => "a_*,b_*"
        # 以下三项保持默认即可,包含线程数和迁移数据大小和logstash jvm配置相关
        docinfo=>true
        slices => 10
        size => 2000
        scroll => "60m"
    }
}

filter {
  # 去掉一些logstash自己加的字段
  mutate {
    remove_field => ["@timestamp", "@version"]
  }
}

output{
    elasticsearch{
        # 目的端es地址
        hosts => ["http://ip:port"]
        # 安全集群配置登录用户名密码
        user => "username"
        password => "password"
 # 目的端索引名称,以下配置为和源端保持一致
        index => "%{[@metadata][_index]}"
        # 目的端索引type,以下配置为和源端保持一致
        document_type => "%{[@metadata][_type]}"
        # 目标端数据的_id,如果不需要保留原_id,可以删除以下这行,删除后性能会更好
        document_id => "%{[@metadata][_id]}"
        ilm_enabled => false
        manage_template => false
    }

    # 调试信息,正式迁移去掉
    stdout { codec => rubydebug { metadata => true }}
}

增量迁移

预处理:

1. @timestamp 在elasticsearch2.0.0beta版本后弃用

_timestamp field | Elasticsearch Guide [2.4] | Elastic

2. 本次对于京办从金山云机房迁移到京东有孚机房,所涉及到的业务领域多,各个业务线中所代表新增记录的时间戳字段不统一,所涉及到的兼容工作量大,于是考虑通过elasticsearch中预处理功能pipeline进行预处理添加统一增量标记字段:gmt_created_at,以减少迁移工作的复杂度(各自业务线可自行评估是否需要此步骤)。

PUT _ingest/pipeline/gmt_created_at
{
  "description": "Adds gmt_created_at timestamp to documents",
  "processors": [
    {
      "set": {
        "field": "_source.gmt_created_at",
        "value": "{{_ingest.timestamp}}"
      }
    }
  ]
}

3. 检查pipeline是否生效

GET _ingest/pipeline/*

4. 各个index设置对应settings增加pipeline为默认预处理

PUT index_xxxx/_settings
{
  "settings": {
    "index.default_pipeline": "gmt_created_at"
  }
}

5. 检查新增settings是否生效

GET index_xxxx/_settings

【案例分享】跨机房ES同步实战_第6张图片

 



增量迁移脚本

schedule-migrate.conf

index:可以使用通配符的方式

query: 增量同步的DSL,统一gmt_create_at为增量同步的特殊标记

schedule: 每分钟同步一把,"* * * * *"

input {
elasticsearch {
        hosts =>  ["ip:port"]
        # 安全集群配置登录用户名密码
        user => "username"
        password => "password"
        index => "index_*"
        query => '{"query":{"range":{"gmt_create_at":{"gte":"now-1m","lte":"now/m"}}}}'
        size => 5000
        scroll => "5m"
        docinfo => true
        schedule => "* * * * *"
      }
}
filter {
     mutate {
      remove_field => ["source", "@version"]
   }
}
output {
    elasticsearch {
        # 目的端es地址
        hosts => ["http://ip:port"]
        # 安全集群配置登录用户名密码
        user => "username"
        password => "password"
        index => "%{[@metadata][_index]}"
        document_type => "%{[@metadata][_type]}"
        document_id => "%{[@metadata][_id]}"
        ilm_enabled => false
        manage_template => false
    }

# 调试信息,正式迁移去掉
stdout { codec => rubydebug { metadata => true }}
}

问题:

mapping中存在join父子类型的字段,直接迁移报400异常



【案例分享】跨机房ES同步实战_第7张图片



[2022-09-20T20:02:16,404][WARN ][logstash.outputs.elasticsearch] Could not index event to Elasticsearch. {:status=>400, 
:action=>["index", {:_id=>"xxx", :_index=>"xxx", :_type=>"joywork_t_work", :routing=>nil}, #], 
:response=>{"index"=>{"_index"=>"xxx", "_type"=>"xxx", "_id"=>"xxx", "status"=>400, 
"error"=>{"type"=>"mapper_parsing_exception", "reason"=>"failed to parse", 
"caused_by"=>{"type"=>"illegal_argument_exception", "reason"=>"[routing] is missing for join field [task_user]"}}}}}

解决方法:

An routing missing exception is obtained when reindex sets the routing value - Elasticsearch - Discuss the Elastic Stack Reindex API parent set to null, removes routing as well · Issue #26183 · elastic/elasticsearch · GitHub

结合业务特征,通过在filter中加入小量的ruby代码,将_routing的值取出来,放回logstah event中,由此问题得以解决。

示例:



【案例分享】跨机房ES同步实战_第8张图片

你可能感兴趣的:(数据库,技术分享,java,大数据,elasticsearch,数据库,迁移学习)