# -*- coding:utf-8 -*-
import tensorflow as tf
import numpy as np
import math
import collections
import pickle as pkl
from pprint import pprint
#from pymongo import MongoClient
import re
import jieba
import os.path as path
import os
class word2vec():
def __init__(self,
vocab_list=None,
embedding_size=200,
win_len=3, # 单边窗口长
num_sampled=1000,
learning_rate=1.0,
logdir='/tmp/simple_word2vec',
model_path= None
):
# 获得模型的基本参数
self.batch_size = None # 一批中数据个数, 目前是根据情况来的
if model_path!=None:
self.load_model(model_path)
else:
# model parameters
assert type(vocab_list)==list
self.vocab_list = vocab_list
self.vocab_size = vocab_list.__len__()
self.embedding_size = embedding_size
self.win_len = win_len
self.num_sampled = num_sampled
self.learning_rate = learning_rate
self.logdir = logdir
self.word2id = {} # word => id 的映射
for i in range(self.vocab_size):
self.word2id[self.vocab_list[i]] = i
# train times
self.train_words_num = 0 # 训练的单词对数
self.train_sents_num = 0 # 训练的句子数
self.train_times_num = 0 # 训练的次数(一次可以有多个句子)
# train loss records
self.train_loss_records = collections.deque(maxlen=10) # 保存最近10次的误差
self.train_loss_k10 = 0
self.build_graph()
self.init_op()
if model_path!=None:
tf_model_path = os.path.join(model_path,'tf_vars')
self.saver.restore(self.sess,tf_model_path)
def init_op(self):
self.sess = tf.Session(graph=self.graph)
self.sess.run(self.init)
self.summary_writer = tf.train.SummaryWriter(self.logdir, self.sess.graph)
def build_graph(self):
self.graph = tf.Graph()
with self.graph.as_default():
self.train_inputs = tf.placeholder(tf.int32, shape=[self.batch_size])
self.train_labels = tf.placeholder(tf.int32, shape=[self.batch_size, 1])
self.embedding_dict = tf.Variable(
tf.random_uniform([self.vocab_size,self.embedding_size],-1.0,1.0)
)
self.nce_weight = tf.Variable(tf.truncated_normal([self.vocab_size, self.embedding_size],
stddev=1.0/math.sqrt(self.embedding_size)))
self.nce_biases = tf.Variable(tf.zeros([self.vocab_size]))
# 将输入序列向量化
embed = tf.nn.embedding_lookup(self.embedding_dict, self.train_inputs) # batch_size
# 得到NCE损失
self.loss = tf.reduce_mean(
tf.nn.nce_loss(
weights = self.nce_weight,
biases = self.nce_biases,
labels = self.train_labels,
inputs = embed,
num_sampled = self.num_sampled,
num_classes = self.vocab_size
)
)
# tensorboard 相关
tf.scalar_summary('loss',self.loss) # 让tensorflow记录参数
# 根据 nce loss 来更新梯度和embedding
self.train_op = tf.train.GradientDescentOptimizer(learning_rate=0.1).minimize(self.loss) # 训练操作
# 计算与指定若干单词的相似度
self.test_word_id = tf.placeholder(tf.int32,shape=[None])
vec_l2_model = tf.sqrt( # 求各词向量的L2模
tf.reduce_sum(tf.square(self.embedding_dict),1,keep_dims=True)
)
avg_l2_model = tf.reduce_mean(vec_l2_model)
tf.scalar_summary('avg_vec_model',avg_l2_model)
self.normed_embedding = self.embedding_dict / vec_l2_model
# self.embedding_dict = norm_vec # 对embedding向量正则化
test_embed = tf.nn.embedding_lookup(self.normed_embedding, self.test_word_id)
self.similarity = tf.matmul(test_embed, self.normed_embedding, transpose_b=True)
# 变量初始化
self.init = tf.global_variables_initializer()
self.merged_summary_op = tf.merge_all_summaries()
self.saver = tf.train.Saver()
def train_by_sentence(self, input_sentence=[]):
# input_sentence: [sub_sent1, sub_sent2, ...]
# 每个sub_sent是一个单词序列,例如['这次','大选','让']
sent_num = input_sentence.__len__()
batch_inputs = []
batch_labels = []
for sent in input_sentence:
for i in range(sent.__len__()):
start = max(0,i-self.win_len)
end = min(sent.__len__(),i+self.win_len+1)
for index in range(start,end):
if index == i:
continue
else:
input_id = self.word2id.get(sent[i])
label_id = self.word2id.get(sent[index])
if not (input_id and label_id):
continue
batch_inputs.append(input_id)
batch_labels.append(label_id)
if len(batch_inputs)==0:
return
batch_inputs = np.array(batch_inputs,dtype=np.int32)
batch_labels = np.array(batch_labels,dtype=np.int32)
batch_labels = np.reshape(batch_labels,[batch_labels.__len__(),1])
feed_dict = {
self.train_inputs: batch_inputs,
self.train_labels: batch_labels
}
_, loss_val, summary_str = self.sess.run([self.train_op,self.loss,self.merged_summary_op], feed_dict=feed_dict)
# train loss
self.train_loss_records.append(loss_val)
# self.train_loss_k10 = sum(self.train_loss_records)/self.train_loss_records.__len__()
self.train_loss_k10 = np.mean(self.train_loss_records)
if self.train_sents_num % 1000 == 0 :
self.summary_writer.add_summary(summary_str,self.train_sents_num)
print("{a} sentences dealed, loss: {b}"
.format(a=self.train_sents_num,b=self.train_loss_k10))
# train times
self.train_words_num += batch_inputs.__len__()
self.train_sents_num += input_sentence.__len__()
self.train_times_num += 1
def cal_similarity(self,test_word_id_list,top_k=10):
sim_matrix = self.sess.run(self.similarity, feed_dict={self.test_word_id:test_word_id_list})
sim_mean = np.mean(sim_matrix)
sim_var = np.mean(np.square(sim_matrix-sim_mean))
test_words = []
near_words = []
for i in range(test_word_id_list.__len__()):
test_words.append(self.vocab_list[test_word_id_list[i]])
nearst_id = (-sim_matrix[i,:]).argsort()[1:top_k+1]
nearst_word = [self.vocab_list[x] for x in nearst_id]
near_words.append(nearst_word)
return test_words,near_words,sim_mean,sim_var
def save_model(self, save_path):
if os.path.isfile(save_path):
raise RuntimeError('the save path should be a dir')
if not os.path.exists(save_path):
os.mkdir(save_path)
# 记录模型各参数
model = {}
var_names = ['vocab_size', # int model parameters
'vocab_list', # list
'learning_rate', # int
'word2id', # dict
'embedding_size', # int
'logdir', # str
'win_len', # int
'num_sampled', # int
'train_words_num', # int train info
'train_sents_num', # int
'train_times_num', # int
'train_loss_records', # int train loss
'train_loss_k10', # int
]
for var in var_names:
model[var] = eval('self.'+var)
param_path = os.path.join(save_path,'params.pkl')
if os.path.exists(param_path):
os.remove(param_path)
with open(param_path,'wb') as f:
pkl.dump(model,f)
# 记录tf模型
tf_path = os.path.join(save_path,'tf_vars')
if os.path.exists(tf_path):
os.remove(tf_path)
self.saver.save(self.sess,tf_path)
def load_model(self, model_path):
if not os.path.exists(model_path):
raise RuntimeError('file not exists')
param_path = os.path.join(model_path,'params.pkl')
with open(param_path,'rb') as f:
model = pkl.load(f)
self.vocab_list = model['vocab_list']
self.vocab_size = model['vocab_size']
self.logdir = model['logdir']
self.word2id = model['word2id']
self.embedding_size = model['embedding_size']
self.learning_rate = model['learning_rate']
self.win_len = model['win_len']
self.num_sampled = model['num_sampled']
self.train_words_num = model['train_words_num']
self.train_sents_num = model['train_sents_num']
self.train_times_num = model['train_times_num']
self.train_loss_records = model['train_loss_records']
self.train_loss_k10 = model['train_loss_k10']
if __name__=='__main__':
# step 1 读取停用词
stop_words = []
with open('stop_words.txt',encoding= 'utf-8') as f:
line = f.readline()
while line:
stop_words.append(line[:-1])
line = f.readline()
stop_words = set(stop_words)
print('停用词读取完毕,共{n}个单词'.format(n=len(stop_words)))
# step2 读取文本,预处理,分词,得到词典
raw_word_list = []
sentence_list = []
with open('2800.txt',encoding='gbk') as f:
line = f.readline()
while line:
while '\n' in line:
line = line.replace('\n','')
while ' ' in line:
line = line.replace(' ','')
if len(line)>0: # 如果句子非空
raw_words = list(jieba.cut(line,cut_all=False))
dealed_words = []
for word in raw_words:
if word not in stop_words and word not in ['qingkan520','www','com','http']:
raw_word_list.append(word)
dealed_words.append(word)
sentence_list.append(dealed_words)
line = f.readline()
word_count = collections.Counter(raw_word_list)
print('文本中总共有{n1}个单词,不重复单词数{n2},选取前30000个单词进入词典'
.format(n1=len(raw_word_list),n2=len(word_count)))
word_count = word_count.most_common(30000)
word_list = [x[0] for x in word_count]
# 创建模型,训练
w2v = word2vec(vocab_list=word_list, # 词典集
embedding_size=200,
win_len=2,
learning_rate=1,
num_sampled=100, # 负采样个数
logdir='/tmp/280') # tensorboard记录地址
num_steps = 10000
for i in range(num_steps):
#print (i%len(sentence_list))
sent = sentence_list[i%len(sentence_list)]
w2v.train_by_sentence([sent])
w2v.save_model('model')
w2v.load_model('model')
test_word = ['天地','级别']
test_id = [word_list.index(x) for x in test_word]
test_words,near_words,sim_mean,sim_var = w2v.cal_similarity(test_id)
print (test_words,near_words,sim_mean,sim_var)
语料库
《斗破苍穹》
第一章 陨落的天才
http://www.qingkan520.com/
第一章陨落的天才(本章免费)
“斗之力,三段!”
望着测验魔石碑上面闪亮得甚至有些刺眼的五个大字,少年面无表情,唇角有着一抹自嘲,紧握的手掌,因为大力,而导致略微尖锐的指甲深深的刺进了掌心之中,带来一阵阵钻心的疼痛…
“萧炎,斗之力,三段!级别:低级!”测验魔石碑之旁,一位中年男子,看了一眼碑上所显示出来的信息,语气漠然的将之公布了出来…
中年男子话刚刚脱口,便是不出意外的在人头汹涌的广场上带起了一阵嘲讽的『骚』动。
“三段?嘿嘿,果然不出我所料,这个“天才”这一年又是在原地踏步!”
“哎,这废物真是把家族的脸都给丢光了。”
“要不是族长是他的父亲,这种废物,早就被驱赶出家族,任其自生自灭了,哪还有机会待在家族中白吃白喝。”
“唉,昔年那名闻乌坦城的天才少年,如今怎么落魄成这般模样了啊?”
“谁知道呢,或许做了什么亏心事,惹得神灵降怒了吧…”
周围传来的不屑嘲笑以及惋惜轻叹,落在那如木桩待在原地的少年耳中,恍如一根根利刺狠狠的扎在心脏一般,让得少年呼吸微微急促。
少年缓缓抬起头来,『露』出一张有些清秀的稚嫩脸庞,漆黑的眸子木然的在周围那些嘲讽的同龄人身上扫过,少年嘴角的自嘲,似乎变得更加苦涩了。
“这些人,都如此刻薄势力吗?或许是因为三年前他们曾经在自己面前『露』出过最谦卑的笑容,所以,如今想要讨还回去吧…”苦涩的一笑,萧炎落寞的转身,安静的回到了队伍的最后一排,孤单的身影,与周围的世界,有些格格不入。
“下一个,萧媚!”
听着测验人的喊声,一名少女快速的人群中跑出,少女刚刚出场,附近的议论声便是小了许多,一双双略微火热的目光,牢牢的锁定着少女的脸颊…
少女年龄不过十四左右,虽然并算不上绝『色』,不过那张稚气未脱的小脸,却是蕴含着淡淡的妩媚,清纯与妩媚,矛盾的集合,让得她成功的成为了全场瞩目的焦点…
少女快步上前,小手轻车熟路的触『摸』着漆黑的魔石碑,然后缓缓闭上眼睛…
在少女闭眼片刻之后,漆黑的魔石碑之上再次亮起了光芒…
“斗之气:七段!”
“萧媚,斗之气:七段!级别:高级!”
“耶!”听着测验员所喊出的成绩,少女脸颊扬起了得意的笑容…
“啧啧,七段斗之气,真了不起,按这进度,恐怕顶多只需要三年时间,她就能称为一名真正的斗者了吧…”
“不愧是家族中种子级别的人物啊…”
听着人群中传来的一阵阵羡慕声,少女脸颊上的笑容更是多了几分,虚荣心,这是很多女孩都无法抗拒的诱『惑』…
与平日里的几个姐妹互相笑谈着,萧媚的视线,忽然的透过周围的人群,停在了人群外的那一道孤单身影上…
皱眉思虑了瞬间,萧媚还是打消了过去的念头,现在的两人,已经不在同一个阶层之上,以萧炎最近几年的表现,成年后,顶多只能作为家族中的下层人员,而天赋优秀的她,则将会成为家族重点培养的强者,前途可以说是不可限量。
“唉…”莫名的轻叹了一口气,萧媚脑中忽然浮现出三年前那意气风发的少年,四岁练气,十岁拥有九段斗之气,十一岁突破十段斗之气,成功凝聚斗之气旋,一跃成为家族百年之内最年轻的斗者!
当初的少年,自信而且潜力无可估量,不知让得多少少女对其春心『荡』漾,当然,这也包括以前的萧媚。
然而天才的道路,貌似总是曲折的,三年之前,这名声望达到巅峰的天才少年,却是突兀的接受到了有生以来最残酷的打击,不仅辛辛苦苦修炼十数载方才凝聚的斗之气旋,一夜之间,化为乌有,而且体内的斗之气,也是随着时间的流逝,变得诡异的越来越少。
斗之气消失的直接结果,便是导致其实力不断的后退。
从天才的神坛,一夜跌落到了连普通人都不如的地步,这种打击,让得少年从此失魂落魄,天才之名,也是逐渐的被不屑与嘲讽所替代。
站的越高,摔得越狠,这次的跌落,或许就再也没有爬起的机会。
“下一个,萧薰儿!”
、、、、、
、、、、、
维基百科语料
process.py
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# 修改后的代码如下:
import logging
import os.path
import sys
from gensim.corpora import WikiCorpus
if __name__ == '__main__':
program = os.path.basename(sys.argv[0])
logger = logging.getLogger(program)
logging.basicConfig(format='%(asctime)s: %(levelname)s: %(message)s')
logging.root.setLevel(level=logging.INFO)
logger.info("running %s" % ' '.join(sys.argv))
# check and process input arguments
if len(sys.argv) < 3:
print (globals()['__doc__'] % locals())
sys.exit(1)
inp, outp = sys.argv[1:3]
space = b' '
i = 0
output = open(outp, 'w',encoding='utf-8')
wiki = WikiCorpus(inp, lemmatize=False, dictionary={})
for text in wiki.get_texts():
s=space.join(text)
s=s.decode('utf8') + "\n"
output.write(s)
i = i + 1
if (i % 10000 == 0):
logger.info("Saved " + str(i) + " articles")
output.close()
logger.info("Finished Saved " + str(i) + " articles")
#python process.py zhwiki-latest-pages-articles.xml.bz2 wiki.zh.text
word2vec_model.py
import logging
import os.path
import sys
import multiprocessing
from gensim.corpora import WikiCorpus
from gensim.models import Word2Vec
from gensim.models.word2vec import LineSentence
if __name__ == '__main__':
program = os.path.basename(sys.argv[0])
logger = logging.getLogger(program)
logging.basicConfig(format='%(asctime)s: %(levelname)s: %(message)s')
logging.root.setLevel(level=logging.INFO)
logger.info("running %s" % ' '.join(sys.argv))
# check and process input arguments
if len(sys.argv) < 4:
print (globals()['__doc__'] % locals())
sys.exit(1)
inp, outp1, outp2 = sys.argv[1:4]
model = Word2Vec(LineSentence(inp), size=400, window=5, min_count=5, workers=multiprocessing.cpu_count())
model.save(outp1)
model.model.wv.save_word2vec_format(outp2, binary=False)
#python word2vec_model.py zh.jian.wiki.seg.txt wiki.zh.text.model wiki.zh.text.vector
#opencc -i wiki_texts.txt -o test.txt -c t2s.json
testModel.py
from gensim.models import Word2Vec
en_wiki_word2vec_model = Word2Vec.load('wiki.zh.text.model')
testwords = ['苹果','数学','学术','白痴','篮球']
for i in range(5):
res = en_wiki_word2vec_model.most_similar(testwords[i])
print (testwords[i])
print (res)
Testjieba.py
import jieba
import jieba.analyse
import jieba.posseg as pseg
import codecs,sys
def cut_words(sentence):
#print sentence
return " ".join(jieba.cut(sentence)).encode('utf-8')
f=codecs.open('wiki.zh.jian.text','r',encoding="utf8")
target = codecs.open("zh.jian.wiki.seg-1.3g.txt", 'w',encoding="utf8")
print ('open files')
line_num=1
line = f.readline()
while line:
print('---- processing ', line_num, ' article----------------')
line_seg = " ".join(jieba.cut(line))
target.writelines(line_seg)
line_num = line_num + 1
line = f.readline()
f.close()
target.close()
exit()
while line:
curr = []
for oneline in line:
#print(oneline)
curr.append(oneline)
after_cut = map(cut_words, curr)
target.writelines(after_cut)
print ('saved',line_num,'articles')
exit()
line = f.readline1()
f.close()
target.close()
# python Testjieba.py
test.py
import codecs,sys
f=codecs.open('zh.jian.wiki.seg-1.3gg.txt','r',encoding="utf8")
line=f.readline()
print(line)