目标检测作为计算机视觉领域的顶梁柱,不仅可以独立完成车辆、商品、缺陷检测等任务,也是人脸识别、视频分析、以图搜图等复合技术的核心模块,在自动驾驶、工业视觉、安防交通等领域的商业价值有目共睹。
正因如此,YOLOv5、YOLOX、PP-YOLOE、PP-PicoDet 等优秀算法层出不穷,各有优劣侧重。而在当前云、边、端多场景协同的产业大趋势下,运行速度、模型计算量、模型格式转化、硬件适配、统一部署方案等实际问题都需要考虑,到底该怎么选呢?
今天小编就给大家推荐一个,针对云、边、端各环境都深层优化的超强目标检测开发套件 — PaddleDetection。无论你追求的是高精度、轻量化,还是场景预训练模型,它其中的模型都能以业界最高标准满足你的需求。同时,这些模型都拥有统一的使用方式及部署策略,不再需要进行模型转化、接口调整,更贴合工业大生产标准化、模块化的需求!
还在等什么!赶紧查看全部开源代码并Star收藏吧!!
传送门: https://github.com/PaddlePaddle/PaddleDetection
下面,让我们来详细解读下这个开发套件中的模型,是如何达到业界最高标准,又如何提供产业最佳实践体验的!
PP-YOLOE:
高精度SOTA目标检测模型
PP-YOLOE 根据不同应用场景设计了 s/m/l/x,4 个尺寸的模型来支持不同算力水平的硬件,无论是哪个尺寸,精度-速度都超越当前所有同等计算量下的 YOLO 模型!
性能卓越:具体来说,PP-YOLOE-l在COCO test-dev 上以精度 51.4%,TRT FP16 推理速度 149FPS 的优异数据,相较 YOLOX,精度提升 1.3%,加速 25%;相较 YOLOv5,精度提升 0.7%,加速 26.8%。训练速度较 PP-YOLOv2 提高 33%,大幅降低模型训练成本。
部署友好:与此同时,PP-YOLOE 在结构设计上避免使用如 deformable convolution 或者 matrix nms 之类的特殊算子,使其能轻松适配更多硬件。当前已经完备支持 NVIDIA V100、T4 这样的云端 GPU 架构以及如 Jetson 系列等边缘端 GPU 和 FPGA 开发板。
PP-YOLOE 完整代码实现:
https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.4/configs/ppyoloe
技术报告:
https://arxiv.org/abs/2203.16250
PP-PicoDet:
0.7M超超超轻量SOTA目标检测模型
超乎想象的超小体积及超预期的性能,使 PP-PicoDet 成为边缘、低功耗硬件部署的最佳选择。
更强性能:PP-PicoDet-S 参数量仅有 1.18M,却有 32.5%mAP 的精度,不仅精度比相较 YOLOX-Nano 高 6.7%,推理速度还提升了 26%;相较比 NanoDet-Plus,mAP 也高出了 2%,速度提升 30%。最新增加的 PP-PicoDet-XS 更是仅有 0.7M,在 CPU 上预测速度可达 250FPS 以上,在训练速度上也大幅提升一倍以上。
更好优化支持:考虑到端侧对计算量的优化追求是极致的,PP-PicoDet 在模型量化训练和稀疏化压缩方案支持方面做了更深度的打磨,仅需两步,即可实现在移动端部署加速 30% 以上的效果。
更友好部署:为了部署更加轻松高效, PP-PicoDet 在模型导出环节, 将模型的后处理包含在了网络中,支持预测直接输出检测结果,无需额外开发后处理模块,还能端到端加速 10%-20%。
PP-PicoDet 代码实现:
https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.4/configs/picodet
技术报告地址:
https://arxiv.org/abs/2111.00902
更多开源社区优秀算法
统一、极致的开发体验
PaddleDetection 还第一时间收录了如 YOLOv4、YOLOX 及 SwinTransformer 等在内的前沿优秀算法,与 Faster-RCNN、YOLOv3 等经典算法一同,为用户提供极致简单、统一的使用方式, 且得益于飞桨原生推理库 Paddle Inference 及飞桨端侧推理框架 Paddle Lite 的能力,通过支持 TensorRT 和 OpenVino,开发者可以快速完成在服务端和边缘端 GPU或 ARM CPU、NPU 等硬件上的高性能加速部署。此外,PaddleDetection 还支持一键导出为 ONNX 格式,顺畅对接 ONNX 生态。
以上所有模型、代码及使用文档、Demo均在PaddleDetection中开源提供,从此无需再内卷,通用目标检测,这一个项目就够了!
赶紧Star收藏订阅最新动态吧!
https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.4
直播课预告
为了让开发者们更深入的了解 PaddleDetection 这次的全新模型,解决落地应用难点,掌握产业实践的核心能力,飞桨团队精心准备了精品直播课!
( 扫码报名直播课,加入技术交流群)
4 月 19 日 20:30,百度资深高工将为我们详细介绍超强检测矩阵,对各类型 SOTA 模型的原理及使用方式进行拆解,之后两天还有检测拓展应用梳理及产业案例全流程实操,对各类痛难点解决方案进行手把手教学,加上直播现场互动答疑,还在等什么!抓紧扫码上车吧!