a.应用程序通过阻塞的io模型来读取number变量的值
b.number是内核驱动中的一个变量
c.number的值随着按键按下而改变(按键中断) 例如number=0 按下按键number=1 ,再次按下按键number=0
d.在按下按键的时候需要同时将led1的状态取反
e.驱动中需要编写字符设备驱动
f.驱动中需要自动创建设备节点
g.这个驱动需要的所有设备信息放在设备树的同一个节点中
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define CNAME "myled"
#include "myled.h"
int minor = 0; //次设备号从0开始
#if 0
unsigned int major = 0;//动态申请
#else
unsigned int major = 500; //静态指定设备号
#endif
char kbuf[128] = {}; //定义数组用于存放和用户之间拷贝的数据
struct cdev *cdev;
struct class *cls;
struct device *dev;
const int count = 3; //指定设备节点的个数为3
//定义队列头
wait_queue_head_t wq_head;
unsigned int condition = 0; //判断是否有数据准备好的标识变量
int gpiono1;
int number = 0;
struct property *pr; //属性结构体指针
struct device_node *node;
unsigned int irqno; //接收软中断号
struct work_struct work;
struct resource *res;
struct gpio_desc *desc;
struct resource *res;
struct gpio_desc *desc;
//对应的是open()
int mycdev_open(struct inode *inode, struct file *file)
{
printk("%s:%s:%d\n", __FILE__, __func__, __LINE__);
return 0;
}
//底半部中断处理函数
void work_func(struct work_struct *w)
{
if (number == 1)
{
//点亮led1
gpio_set_value(gpiono1, 0);
number = 0;
}
else if (number == 0)
{
//点亮led1
gpio_set_value(gpiono1, 1);
number = 1;
}
condition = 1;
wake_up_interruptible(&wq_head);
}
//中断处理函数
irqreturn_t irq_handler(int irq, void *dev)
{
//启用底半部中断处理
schedule_work(&work);
return IRQ_HANDLED;
}
// read()
ssize_t mycdev_read(struct file *file, char __user *ubuf, size_t size, loff_t *loff)
{
// size参数是用户期待读到的字节长度
int ret;
if (file->f_flags & O_NONBLOCK)
{
//非阻塞
return -EINVAL;
}
else
{
//阻塞
ret = wait_event_interruptible(wq_head, condition);
if (ret)
{
printk("接收阻塞休眠\n");
return ret;
}
}
//把父进程拷贝到内核的数据再拷贝给子进程
if (size > sizeof(number))
size = sizeof(number);
ret = copy_to_user(ubuf, &number, size);
if (ret)
{
printk("数据从内核向用户拷贝失败\n");
return -EIO;
}
// condition=0;
condition = 0;
return size;
}
// write()
ssize_t mycdev_write(struct file *file, const char __user *ubuf, size_t size, loff_t *loff)
{
int ret;
if (size > sizeof(kbuf))
size = sizeof(kbuf);
ret = copy_from_user(kbuf, ubuf, size);
if (ret)
{
printk("数据从内核向用户拷贝失败\n");
return -EIO;
}
//唤醒
condition = 1;
wake_up_interruptible(&wq_head);
return size;
}
int mycdev_close(struct inode *inode, struct file *file)
{
printk("%s:%s:%d\n", __FILE__, __func__, __LINE__);
return 0;
}
//操作方法结构体的初始化
struct file_operations fops =
{
.open = mycdev_open,
.read = mycdev_read,
.release = mycdev_close,
.write = mycdev_write,
};
int pdrv_probe(struct platform_device *pdr)
{
//获取设备信息
printk("%s:%d\n", __FILE__, __LINE__);
res = platform_get_resource(pdr, IORESOURCE_MEM, 0);
if (res == NULL)
{
printk("获取资源失败\n");
return -ENODATA;
}
irqno = platform_get_irq(pdr, 0);
if (irqno < 0)
{
printk("获取资源失败\n");
return irqno;
}
printk("%#x %d\n", res->start, irqno);
return 0;
}
int pdrv_remove(struct platform_device *pdr)
{
printk("%s:%d\n", __FILE__, __LINE__);
return 0;
}
//定义compatible表
struct of_device_id oftable[] = {
{.compatible = "hqyj,hello"},
{},
};
MODULE_DEVICE_TABLE(of, oftable);
//定义并初始化对象
struct platform_driver pdrv = {
.probe = pdrv_probe,
.remove = pdrv_remove,
.driver = {
.name = "test",
.of_match_table = oftable, //设备树匹配
},
};
static int __init mycdev_init(void)
{
int ret, i;
//分配对象
dev_t devno;
//注册对象
platform_driver_register(&pdrv);
cdev = cdev_alloc();
if (cdev == NULL)
{
printk("cdev alloc memory err\n");
ret = -ENOMEM;
goto ERR1;
}
printk("对象分配成功\n");
//对象的初始化
cdev_init(cdev, &fops);
//设备号的申请
if (major == 0) //动态申请
{
ret = alloc_chrdev_region(&devno, minor, count, "my_led");
if (ret)
{
printk("动态申请设备号失败\n");
goto ERR2;
}
major = MAJOR(devno);
minor = MINOR(devno);
printk("动态申请设备号成功\n");
}
else
{
ret = register_chrdev_region(MKDEV(major, minor), count, "my_led");
if (ret)
{
printk("静态申请设备号失败\n");
goto ERR2;
}
printk("静态申请设备号成功\n");
}
//注册字符设备驱动
ret = cdev_add(cdev, MKDEV(major, minor), count);
if (ret)
{
printk("字符设备驱动注册失败\n");
goto ERR3;
}
printk("注册字符设备驱动成功\n");
//自动创建设备节点
cls = class_create(THIS_MODULE, "led");
if (IS_ERR(cls))
{
printk("创建逻辑节点目录失败\n");
ret = PTR_ERR(cls);
goto ERR4;
}
printk("创建逻辑节点目录成功\n");
//向上提交节点信息
for (i = 0; i < 3; i++)
{
dev = device_create(cls, NULL, MKDEV(major, i), NULL, "my_led%d", i);
if (IS_ERR(dev))
{
printk("创建逻辑节点失败\n");
ret = PTR_ERR(dev);
goto ERR5;
}
}
printk("创建逻辑节点成功\n");
//初始化队列头
init_waitqueue_head(&wq_head);
//工作队列初始化
INIT_WORK(&work, work_func);
//解析设备树节点
node = of_find_node_by_name(NULL, "myirq");
if (node == NULL)
{
printk("解析设备树节点失败\n");
return EAGAIN;
}
printk("解析设备树节点成功\n");
//根据设备树节点获取软中断号
irqno = irq_of_parse_and_map(node, 0);
if (irqno == 0)
{
printk("获取软中断号失败\n");
return EINVAL;
}
printk("获取软中断号成功\n");
//注册中断
ret = request_irq(irqno, irq_handler, IRQF_TRIGGER_FALLING, "key2_inte", NULL);
if (ret)
{
printk("注册中断失败\n");
return ret;
}
printk("注册中断成功\n");
//获取gpio编号
gpiono1 = of_get_named_gpio(node, "led1", 0);
if (gpiono1 < 0)
{
printk("获取led1编号失败\n");
return gpiono1;
}
printk("获取led1编号成功\n");
//申请gpio编号使用权
ret = gpio_request(gpiono1, NULL);
if (ret)
{
printk("申请设备编号失败\n");
return ret;
}
//设置输出方式
gpio_direction_output(gpiono1, 0);
return 0;
ERR5:
for (--i; i >= 0; i--)
{
device_destroy(cls, MKDEV(major, i));
}
class_destroy(cls);
ERR4:
cdev_del(cdev);
ERR3:
unregister_chrdev_region(MKDEV(major, minor), count);
ERR2:
kfree(cdev);
ERR1:
return ret;
}
static void __exit mycdev_exit(void)
{
// 1.销毁设备节点
int i;
for (i = 0; i < count; i++)
{
device_destroy(cls, MKDEV(major, i));
}
class_destroy(cls);
// 2.注销字符设备驱动
cdev_del(cdev);
// 3.释放设备号
unregister_chrdev_region(MKDEV(major, minor), count);
// 4.释放动态申请的空间
kfree(cdev);
//注销中断
free_irq(irqno, NULL);
//释放设备号
gpio_set_value(gpiono1, 0);
gpio_free(gpiono1);
//释放GPIO编号
gpiod_direction_output(desc, 0);
gpiod_put(desc);
//注销
platform_driver_unregister(&pdrv);
}
module_init(mycdev_init);
module_exit(mycdev_exit);
MODULE_LICENSE("GPL");
modname ?= demo
arch ?= arm
ifeq ($(arch),arm)#arm架构
KERNELDIR := /home/ubuntu/fsmp1a/linux-stm32mp-5.10.61-stm32mp-r2-r0/linux-5.10.61
else
KERNELDIR := /lib/modules/$(shell uname -r)/build #当前x86架构格式路径
#KERNELDIR是一个变量,指向内核源码目录
endif
PWD:=$(shell pwd)
#PWD指向当前驱动目录的一个变量
all:
make -C $(KERNELDIR) M=$(PWD) modules
#make -C $(KERNELDIR)
#进入内核顶层目录下,读取对应的Makefile文件,然后执行make
# M=$(PWD) :指定编译模块的路径为当前驱动路径
#make modules:模块化编译
#进入内核顶层目录使用其中的Makefile对当前文件进行模块化编译
clean:
make -C $(KERNELDIR) M=$(PWD) clean
#清除编译
obj-m:=$(modname).o
#指定当前编译生成的模块名字为demo demo.c==>demo.ko
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include"myled.h"
int main(int argc, char const *argv[])
{
pid_t pid;
int number=0;
int count = 10;
int fd=open("/dev/my_led0",O_RDWR);
if(fd<0)
{
printf("设备文件打开失败\n");
exit(-1);
}
while(1)
{
//write(fd,&number,sizeof(number));
read(fd,&number,sizeof(number));
printf("number:%d\n",number);
}
exit(0);
return 0;
}
myplatform{
compatible="hqyj,hello2";
//填写内存地址
reg = <0x12345678 0x14>;
//填写中断
interrupt-parent=<&gpiof>;
interrupts=<9 0>,<7 0>,<8 0>;
led1 = <&gpioe 10 0>;
led2 = <&gpiof 10 0>;
led3 = <&gpioe 8 0>;
};
终端运行make modname=pdrv arch=arm,生成pdrv.ko
终端运行arm-linux-gnueabihf-gcc test.c,生成a.out
将这两个文件复制到~/nfs/rootfs/下
在串口工具中下载驱动并运行a.out