基本原理
- 三因素模型表达式:
E(Rit) − Rft = βi[E(Rmt − Rft] + siE(SMBt) + hiE(HMIt)
- 根据一篇文章,选择三个因子作测试:
- 财务因子:EPS
- 成交量因子:log(30日日均交易量/昨日交易量)
- 反转因子:(ma10-ma5)/ma5
- 综合选取这三个因子,0.3,0.4,0.3的权值加和,选取较高的股票并持仓。综合选取这三个因子,0.3,0.4,0.3的权值加和,选取较高的股票并持仓。
策略实现
- 初始资金100万,20万无明显效果差异,时间段为2017-01-01~2018-01-01.
- 选取市盈率0~20之间的股票,每日对三因子加和进行排序
- 每天进行判断,选取三因子加和排名前n的股票,若已持股,继续买入,未持股则买入,已持股中有不在排名前n中的,卖出。
- (每日操作10只股票)运行截图(忽略曲线名):
- (每日操作20只股票)运行截图(忽略曲线名):
遇到的问题及改进:
- 采用的三个因子或许还能有其他财务因子进行代表
- 本次代码中取得EPS的时间有些过长,有点想法,等我后面改进(已改进,不必每只股票每天的eps都获取一次)
代码如下:
# coding: utf-8
# @author: lin
# @date: 2018/11/20
import QUANTAXIS as QA
import datetime
import pandas as pd
import time
import math
import matplotlib.pyplot as plt
import numpy as np
pd.set_option('max_colwidth', 5000)
pd.set_option('display.max_columns', 5000)
pd.set_option('display.max_rows', 5000)
class ThreePara:
def __init__(self, start_time, stop_time, n_stock=10, stock_init_cash=1000000, n_days_before=1):
self.Account = QA.QA_Account() # 初始化账户
self.Account.reset_assets(stock_init_cash) # 初始化账户
self.Account.account_cookie = 'three_para'
self.Broker = QA.QA_BacktestBroker()
self.time_quantum_list = ['-12-31', '-09-30', '-06-30', '-03-31']
self.start_time = start_time
self.stop_time = stop_time
self.n_days_before = n_days_before
self.stock_pool = []
self.data = None
self.ind = None
self.n_stock = n_stock
self.get_stock_pool()
def get_financial_time(self):
"""
得到此日期前一个财务数据的日期
:return:
"""
year = self.start_time[0:4]
while (True):
for day in self.time_quantum_list:
the_financial_time = year + day
if the_financial_time <= self.start_time:
return the_financial_time
year = str(int(year) - 1)
def get_assets_eps(self, stock_code, the_financial_time):
"""
得到高级财务数据
:param stock_code:
:param the_financial_time: 离开始时间最近的财务数据的时间
:return:
"""
financial_report = QA.QA_fetch_financial_report(stock_code, the_financial_time)
if financial_report is not None:
return financial_report.iloc[0]['totalAssets'], financial_report.iloc[0]['EPS']
return None, None
def get_stock_pool(self):
"""
选取哪些股票
"""
stock_code_list = QA.QA_fetch_stock_list_adv().code.tolist()
the_financial_time = self.get_financial_time()
for stock_code in stock_code_list:
# print(stock_code)
assets, EPS = self.get_assets_eps(stock_code, the_financial_time)
if assets is not None and EPS != 0:
data = QA.QA_fetch_stock_day_adv(stock_code, self.start_time, self.stop_time)
if data is None:
continue
price = data.to_pd().iloc[0]['close']
if 0 < price / EPS < 20: # 满足条件才添加进行排序
# print(price / EPS)
self.stock_pool.append(stock_code)
def cjlyz(self, data, n=20):
# log(30日日均交易量/昨日交易量)
data['cjlyz'] = 0
data['n_days_vol_ave'] = QA.MA(data['volume'], n)
data = data.fillna(0)
last_index = 0
for index, row in data.iterrows():
if last_index != 0:
data.loc[index, 'cjlyz'] = row['n_days_vol_ave'] / data.loc[last_index, 'volume']
last_index = index
for index, row in data.iterrows():
if row['cjlyz'] != 0:
data.loc[index, 'cjlyz'] = math.log10(row['cjlyz'])
return data
# 反转因子
def fzyz(self, data, n=10, m=5):
# (ma10-ma5)/ma5
data['ma_10'] = QA.MA(data['close'], n)
data['ma_5'] = QA.MA(data['close'], m)
data['fzyz'] = (data['ma_10'] - data['ma_5']) / data['ma_5']
data = data.fillna(0)
return data
def get_EPS(self, stock_code, the_time):
# 由财政数据中得到EPS,是上个季度的
year = the_time[0:4]
if_break = False
n_EPS_list = []
while (True):
for day in self.time_quantum_list:
date = year + day
if date < the_time:
financial_report = QA.QA_fetch_financial_report(stock_code, date)
if financial_report is not None:
return financial_report.iloc[0]['EPS']
if if_break: # 触发,则跳出循环
break
year = str(int(year) - 1)
def three_para(self, data):
# 整合三个因子
data = self.cjlyz(data)
data = self.fzyz(data)
data['EPS'] = 0
if_first = True
last_index = None
for index, row in data.iterrows():
if_value_equal = True # 值是否跟上次值相同
the_time = str(index[0])[:10]
if not if_first:
last_time = str(last_index[0])[:10]
for time_quantum in self.time_quantum_list:
middle_time = last_time[:4] + time_quantum # 得到判断的分界点
if last_time < middle_time < the_time: # 有一次处于分界点左右,则需要重新计算
if_value_equal = False
break
if if_value_equal:
data.loc[index, 'EPS'] = data.loc[last_index, 'EPS']
if if_first or not if_value_equal:
stock_code = str(index[1])
# print(stock_code)
value = self.get_EPS(stock_code, the_time)
data.loc[index, 'EPS'] = value
if_first = False
last_index = index # 把当次索引加入,下次调用则为上次索引
data['decided_para'] = 0.3 * data['EPS'] + 0.4 * data['cjlyz'] + 0.3 * data['fzyz']
return data
def solve_data(self):
self.data = QA.QA_fetch_stock_day_adv(self.stock_pool, self.start_time, self.stop_time)
self.ind = self.data.add_func(self.three_para)
def run(self):
self.solve_data()
print(self.ind)
for items in self.data.panel_gen:
today_time = items.index[0][0]
one_day_data = self.ind.loc[today_time] # 得到有包含因子的DataFrame
one_day_data['date'] = items.index[0][0]
one_day_data.reset_index(inplace=True)
one_day_data.sort_values(by='decided_para', axis=0, ascending=False, inplace=True)
today_stock = list(one_day_data.iloc[0:self.n_stock]['code'])
one_day_data.set_index(['date', 'code'], inplace=True)
one_day_data = QA.QA_DataStruct_Stock_day(one_day_data) # 转换格式,便于计算
bought_stock_list = list(self.Account.hold.index)
print("SELL:")
for stock_code in bought_stock_list:
# 如果直接在循环中对bought_stock_list操作,会跳过一些元素
if stock_code not in today_stock:
try:
item = one_day_data.select_day(str(today_time)).select_code(stock_code)
order = self.Account.send_order(
code=stock_code,
time=today_time,
amount=self.Account.sell_available.get(stock_code, 0),
towards=QA.ORDER_DIRECTION.SELL,
price=0,
order_model=QA.ORDER_MODEL.MARKET,
amount_model=QA.AMOUNT_MODEL.BY_AMOUNT
)
self.Broker.receive_order(QA.QA_Event(order=order, market_data=item))
trade_mes = self.Broker.query_orders(self.Account.account_cookie, 'filled')
res = trade_mes.loc[order.account_cookie, order.realorder_id]
order.trade(res.trade_id, res.trade_price, res.trade_amount, res.trade_time)
except Exception as e:
print(e)
print('BUY:')
for stock_code in today_stock:
try:
item = one_day_data.select_day(str(today_time)).select_code(stock_code)
order = self.Account.send_order(
code=stock_code,
time=today_time,
amount=1000,
towards=QA.ORDER_DIRECTION.BUY,
price=0,
order_model=QA.ORDER_MODEL.CLOSE,
amount_model=QA.AMOUNT_MODEL.BY_AMOUNT
)
self.Broker.receive_order(QA.QA_Event(order=order, market_data=item))
trade_mes = self.Broker.query_orders(self.Account.account_cookie, 'filled')
res = trade_mes.loc[order.account_cookie, order.realorder_id]
order.trade(res.trade_id, res.trade_price, res.trade_amount, res.trade_time)
except Exception as e:
print(e)
self.Account.settle()
Risk = QA.QA_Risk(self.Account)
print(Risk.message)
# plt.show()
Risk.assets.plot() # 总资产
plt.show()
Risk.benchmark_assets.plot() # 基准收益的资产
plt.show()
Risk.plot_assets_curve() # 两个合起来的对比图
plt.show()
Risk.plot_dailyhold() # 每只股票每天的买入量
plt.show()
start = time.time()
sss = ThreePara('2017-01-01', '2018-01-01', 10)
stop = time.time()
print(stop - start)
print(len(sss.stock_pool))
sss.run()
stop2 = time.time()
print(stop2 - stop)