值得一读的论文:深度学习与三维点云

近年来深度学习方法应用在三维点云处理上较好的论文,mark一下。慢慢看。/(ㄒoㄒ)/~~
github已经有总结的比较好的repository了,不如直接来看这个awesome point cloud analysis,大佬有一直在维护,非常贴心!

Summary

比较新的一篇综述(arxiv 2019.12): Deep Learning for 3D Point Clouds: A Survey 论文链接

PointNet family

  • PointNet
    Charles R Q , Su H , Kaichun M , et al. PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2017.
    论文链接 & tensorflow源码 & pytorch源码
    成功将深度学习应用于原始点云数据的处理,Shared MLP + max pool(symmetric function),通过使用对称函数(max pool/average pool,论文中有通过实验说明max pool效果更好一些)来解决点云的置换不变性,使用T-Net来解决点云的旋转不变性。由于主要是逐点进行特征提取的,并没有考虑相邻点的空间关系,此外也没有考虑尺度不变性、点云密度不均的问题。
  • PointNet++
    Qi C R , Yi L , Su H , et al. PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space[J]. 2017.
    论文链接 & tensorflow源码 & pytorch源码
    在PointNet的基础上考虑了相邻点的信息,更好的提取了局部特征,并考虑到了点云密度不均的问题。Sampling+Grouping+PointNet
  • Frustum PointNets
    Qi C R , Liu W , Wu C , et al. Frustum PointNets for 3D Object Detection from RGB-D Data[J]. 2017.
    用PointNet的思想搭建的物体识别的框架,效果也不错。
  • Flownet3D
    Liu, Xingyu, Qi, Charles R, Guibas, Leonidas J. FlowNet3D: Learning Scene Flow in 3D Point Clouds[J].
    论文链接
    根据两帧点云数据进行光流估计,也用PointNet完成了其中的一些操作。

Regular Processing

  • VoxelNet
    Zhou, Yin, Tuzel, Oncel. VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection[J].
    将点云划分到网格中,然后用3DCNN做后续的工作。
  • SPLATNet
    Su et al. SPLATNet: Sparse Lattice Networks for Point Cloud Processing CVPR2018
    论文链接 & pytorch源码
    将点云映射到晶格空间做双边卷积,相关的工作有Kiefei et al. Permutohedral Lattice CNNs. ICLR 2015, Jampani et al. Bilateral Neural Networks. CVPR 2016.
  • PCNN
    Matan Atzmon, Haggai Maron, Yaron Lipman. Point Convolutional Neural Networks by Extension Operators. SIGGRAPH 2018.
    论文链接 & tensorflow源码
    将点云映射到体积空间而不存在任何的近似和离散
  • PointCNN
    Li, Yangyan, Bu, Rui, Sun, Mingchao, Wu, Wei, Di, Xinhan, & Chen, Baoquan. . Pointcnn: convolution on ꭓ-transformed points.
    论文链接 & tensorflow源码 & pytorch源码 & mxnet
    设计了 κ \kappa κ-Conv Operation
  • PointSIFT
    Jiang M , Wu Y , Zhao T , et al. PointSIFT: A SIFT-like Network Module for 3D Point Cloud Semantic Segmentation[J]. 2018.
    论文链接 & tensorflow源码 & pytorch源码
    对于每一个局部邻域找到中心点,以中心点为原点建立坐标系,然后分方向进行卷积,此外还设计了尺度编码
  • SO-Net
    Li J , Chen B M , Lee G H . SO-Net: Self-Organizing Network for Point Cloud Analysis[J]. 2018.
    论文链接 & pytorch源码
    Self-Organization Map + MLP
  • Pointwise CNN
    Hua, Binh-Son, Tran, Minh-Khoi, Yeung, Sai-Kit. Pointwise Convolutional Neural Networks[J].
    论文链接 & tensorflow源码
    想法很简单,但是好像效果海星
  • Kd-Net
    Roman Klokov,Victor Lempitsky. Escape from Cells: Deep Kd-Networks for the Recognition of 3D Point Cloud Models.
    论文链接 & pytorch源码链接
    把数据结构引入到点云的深度学习中
  • FCPN
    Rethage, Dario, Wald, Johanna, Sturm, Jürgen et al. Fully-Convolutional Point Networks for Large-Scale Point Clouds[J].
    3D grid+PointNet+3DCNN

Graph-based Modeling

  • DGCNN
    Wang Y , Sun Y , Liu Z , et al. Dynamic Graph CNN for Learning on Point Clouds[J]. 2018.
    论文链接 & tensorflow源码链接
    设计了动态图卷积网络
  • RGCNN
    Gusi Te, Wei Hu, Zongming Guo, Amin Zheng. RGCNN: Regularized Graph CNN for Point Cloud Segmentation. MM 2018.
    论文链接
  • GAN for Point Cloud
    Diego Valsesia, Giulia Fracastoro, Enrico Magli. Learning Localized Generative Models for 3D Point Clouds via Graph Convolution. ICLR 2019
    采用了GAN
  • LocalSpecGCN
    Wang C , Samari B , Siddiqi K . Local Spectral Graph Convolution for Point Set Feature Learning[J]. 2018.
    论文链接 & tensorflow源码链接
    在谱域进行卷积
  • Supperpoint GCN
    Landrieu L , Simonovsky M . Large-scale Point Cloud Semantic Segmentation with Superpoint Graphs[J]. CVPR 2018.
    论文链接 & pytorch源码链接
    针对大型点云
  • Deep GCNs
    Guohao Li, Matthias Müller, Ali Thabet, Bernard Ghanem. DeepGCNs: Can GCNs Go as Deep as CNNs?. ICCV 2019 Oral
    论文链接 & 源码链接
    加入了残差卷积和密集卷积的思想,把网络做的更深

Convolution Kernel

  • KC-Net
    Shen Y , Feng C , Yang Y , et al. Mining Point Cloud Local Structures by Kernel Correlation and Graph Pooling[J]. 2017.
    论文链接 & caffe源码 & pytorch源码
  • KPConv
    Hugues et al. KPConv: Flexible and Deformable Convolution for Point Clouds. arXiv 2019
    论文链接 & 源码链接
  • MCCNN
    源码链接
  • PointConv
    PointConv: Deep Convolutional Networks on 3D Point Clouds
    论文链接
  • Geo-CNN
    Lan S , Yu R , Yu G , et al. Modeling Local Geometric Structure of 3D Point Clouds using Geo-CNN[J]. 2018.
    论文链接
  • Tangent Conv
    Tatarchenko et al. Tangent Convolutions for Dense Prediction in 3D
    论文链接
  • PointWeb
    PointWeb: Enhancing Local Neighborhood Features for Point Cloud Processing. CVPR 2019
    论文链接 & pytorch源码 & b站效果展示
  • A-CNN
    A-CNN: Annularly Convolutional Neural Networks on Point Clouds. CVPR 2019
    论文链接 & tensorflow源码

Robustness

  • Li et al. Discrete Rotation Equivariance. ICRA 2019
  • Cohen et al. Group Equivariant CNN. ICML 2016.
  • Chen et al. ClusterNet. CVPR 2019
  • Esteves et al. SO(3) Equivariant ECCV 2018
  • Cohen et al. Spherical CNNs. ICLR 2018
  • Rao et al. SFCNN CVPR 2019

另附:

  • Point Cloud 2019 CVPR、ICCV、arXiv 的一些(好多)论文的链接和源码链接
  • awesome point cloud analysis

你可能感兴趣的:(语义分割)