pytorch与python版本对应表_albert_zh对应的pytorch版本

albert_pytorch

This repository contains a PyTorch implementation of the albert model from the paper

by Zhenzhong Lan. Mingda Chen....

Dependencies

pytorch=1.10

cuda=9.0

cudnn=7.5

scikit-learn

sentencepiece

Download Pre-trained Models of English

Official download links: google albert

Adapt to this version,download pytorch model (google drive):

v1

v2

Fine-tuning

1. Place config.json and 30k-clean.model into the prev_trained_model/albert_base_v2 directory. example:

├── prev_trained_model

| └── albert_base_v2

| | └── pytorch_model.bin

| | └── config.json

| | └── 30k-clean.model

2.convert albert tf checkpoint to pytorch

python convert_albert_tf_checkpoint_to_pytorch.py \

--tf_checkpoint_path=./prev_trained_model/albert_base_tf_v2 \

--bert_config_file=./prev_trained_model/albert_base_v2/config.json \

--pytorch_dump_path=./prev_trained_model/albert_base_v2/pytorch_model.bin

The General Language Understanding Evaluation (GLUE) benchmark is a collection of nine sentence- or sentence-pair language understanding tasks for evaluating and analyzing natural language understanding systems.

Before running anyone of these GLUE tasks you should download the GLUE data by running this script and unpack it to some directory $DATA_DIR.

3.run sh scripts/run_classifier_sst2.shto fine tuning albert model

Result

Performance of ALBERT on GLUE benchmark results using a single-model setup on dev:

Cola

Sst-2

Mnli

Sts-b

metric

matthews_corrcoef

accuracy

accuracy

pearson

model

Cola

Sst-2

Mnli

Sts-b

albert_base_v2

0.5756

0.926

0.8418

0.9091

albert_large_v2

0.5851

0.9507

0.9151

albert_xlarge_v2

0.6023

0.9221

你可能感兴趣的:(pytorch与python版本对应表_albert_zh对应的pytorch版本)