摄像机去畸变

摄像机去畸变

摄像机原始图像 I \mathbf{I} I,去畸变后的图像 I d \mathbf{I}_d Id

I d \mathbf{I}_d Id 的一点 [ u d , v d , 1 ] ⊤ [u_d, v_d, 1]^\top [ud,vd,1],对应 I \mathbf{I} I 的一点 [ u , v , 1 ] ⊤ [u, v, 1]^\top [u,v,1]

[ x 1 y 1 1 ] = K − 1 [ u d v d 1 ] \begin{bmatrix} x_1 \\ y_1 \\ 1 \end{bmatrix} = \mathbf{K}^{-1} \begin{bmatrix} u_d\\ v_d\\ 1 \end{bmatrix} x1y11=K1udvd1

x 2 = x 1 ⋅ 1 + k 1 r 2 + k 2 r 4 + k 3 r 6 1 + k 4 r 2 + k 5 r 4 + k 6 r 6 + 2 p 1 x 1 y 1 + p 2 ( r 2 + 2 x 1 2 ) y 2 = y 1 ⋅ 1 + k 1 r 2 + k 2 r 4 + k 3 r 6 1 + k 4 r 2 + k 5 r 4 + k 6 r 6 + p 1 ( r 2 + 2 y 1 2 ) + 2 p 2 x 1 y 1 where  r 2 = x 1 2 + y 1 2 x_2 = x_1 \cdot \frac{1 + k_1 r^2 + k_2 r^4 + k_3 r^6}{1 + k_4 r^2 + k_5 r^4 + k_6 r^6} + 2 p_1 x_1 y_1 + p_2(r^2 + 2 x_1^2) \\ y_2 = y_1 \cdot \frac{1 + k_1 r^2 + k_2 r^4 + k_3 r^6}{1 + k_4 r^2 + k_5 r^4 + k_6 r^6} + p_1 (r^2 + 2 y_1^2) + 2 p_2 x_1 y_1 \\ \text{where} \ r^2 = x_1^2 + y_1^2 x2=x11+k4r2+k5r4+k6r61+k1r2+k2r4+k3r6+2p1x1y1+p2(r2+2x12)y2=y11+k4r2+k5r4+k6r61+k1r2+k2r4+k3r6+p1(r2+2y12)+2p2x1y1where r2=x12+y12

[ u v 1 ] = K [ x 2 y 2 1 ] \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \mathbf{K} \begin{bmatrix} x_2\\ y_2\\ 1 \end{bmatrix} uv1=Kx2y21

你可能感兴趣的:(workspace,算法)