一个python文件中的两个linear()层和一个conv2d()层同时使用(b,c,1,1)大小的张量作为输入时的输出结果对比

import torch
import torch.nn as nn


x = torch.randn(6, 512, 1, 1)
print(x, x.shape)
# # x_ = torch.randn(64, 5)
x_ = x.view(6, 512)
m_ = nn.Linear(512, 5)
m__ = nn.Linear(512, 5)
y_ = m_(x_)
y__ = m__(x_)
print(m_.weight, m_.weight.shape)
print(m_.bias, m_.bias.shape)
print(y_, y_.shape)
# linear(512, 5)时候,输入张量形状为(6, 512),输出形状为张量为(6, 5),权重张量形状为(6, 512),偏执张量形状为(5)
print(torch.sum(x_[0]*m_.weight[0])+m_.bias[0], torch.sum(x_[0]*m_.weight[1])+m_.bias[1])  # 此语句为验证输出张量中的前两个元素


print("****"*25)
print(m__.weight, m__.weight.shape)
print(m__.bias, m__.bias.shape)
print(y__, y__.shape)
print(torch.sum(x_[0]*m__.weight[0])+m__.bias[0], torch.sum(x_[0]*m__.weight[1])+m__.bias[1])


m = nn.Conv2d(512, 5, (1, 1), padding=0)
y = m(x)
print(m.weight, m.weight.shape)
print(m.bias, m.bias.shape)
print(y, y.shape)

print(torch.sum(x[0]*m.weight[0])+m.bias[0])  # 此语句为验证输出张量中的第一个元素
print(torch.sum(x[0]*m.weight[1])+m.bias[1])  # 此语句为验证输出张量中的第二个元素
print(torch.sum(x[5]*m.weight[4])+m.bias[4])  # 此语句为验证输出张量中的最后一个元素

输出结果如下所示:

tensor([[[[-0.0227]],

         [[-0.3054]],

         [[ 0.5264]],

         ...,

         [[ 0.5306]],

         [[ 0.0769]],

         [[-0.3278]]],


        [[[ 0.0224]],

         [[ 0.0277]],

         [[ 2.0995]],

         ...,

         [[-0.3214]],

         [[ 1.1956]],

         [[-0.7666]]],


        [[[-1.6789]],

         [[-0.3657]],

         [[ 2.0482]],

         ...,

         [[-1.7332]],

         [[-1.7271]],

         [[-0.5530]]],


        [[[-2.3737]],

         [[-0.6993]],

         [[-0.6078]],

         ...,

         [[-0.3336]],

         [[-0.6361]],

         [[ 0.1160]]],


        [[[ 0.4130]],

         [[ 0.7437]],

         [[-1.0734]],

         ...,

         [[-0.8741]],

         [[-1.4548]],

         [[ 0.1135]]],


        [[[-0.3648]],

         [[-0.4488]],

         [[ 0.2677]],

         ...,

         [[ 1.7004]],

         [[-0.4827]],

         [[ 2.5061]]]]) torch.Size([6, 512, 1, 1])
Parameter containing:
tensor([[ 3.9740e-02,  1.7094e-02, -3.0316e-02,  ..., -4.2785e-02,
         -3.9551e-02,  3.5973e-02],
        [-3.1560e-02, -4.0857e-02, -7.9212e-03,  ...,  1.4893e-02,
         -3.4417e-02,  9.5926e-06],
        [ 3.4473e-02,  7.5045e-03,  2.1143e-02,  ...,  3.7036e-02,
         -3.3019e-02,  3.8141e-02],
        [-2.5011e-03, -2.6943e-03, -1.5124e-02,  ..., -5.4786e-03,
          4.3845e-02, -3.4378e-02],
        [-3.5882e-02, -3.9723e-02, -3.2679e-02,  ..., -1.8698e-02,
         -1.6418e-02, -3.4124e-03]], requires_grad=True) torch.Size([5, 512])
Parameter containing:
tensor([-0.0246, -0.0111,  0.0396,  0.0143, -0.0365], requires_grad=True) torch.Size([5])
tensor([[-0.3218, -0.6336,  0.2198, -0.8990,  0.5238],
        [-0.4804, -1.2615, -0.5049,  0.0911, -0.2541],
        [-0.2615,  0.5038, -0.4231, -1.0328, -0.2629],
        [-0.2202,  0.3873,  0.7698,  0.6329,  1.2157],
        [-0.1368, -0.6852, -0.4037,  0.2678, -0.9539],
        [-0.5605,  0.6245,  0.6762, -0.4133, -0.0435]],
       grad_fn=) torch.Size([6, 5])
tensor(-0.3218, grad_fn=) tensor(-0.6336, grad_fn=)
****************************************************************************************************
Parameter containing:
tensor([[ 0.0020, -0.0086,  0.0212,  ...,  0.0236,  0.0126,  0.0070],
        [ 0.0206, -0.0058,  0.0352,  ...,  0.0417,  0.0153,  0.0135],
        [-0.0284, -0.0361,  0.0376,  ..., -0.0171,  0.0051, -0.0026],
        [-0.0027, -0.0329,  0.0306,  ..., -0.0401,  0.0155, -0.0312],
        [ 0.0326,  0.0103,  0.0237,  ..., -0.0341, -0.0203, -0.0278]],
       requires_grad=True) torch.Size([5, 512])
Parameter containing:
tensor([ 0.0172, -0.0238,  0.0174,  0.0154,  0.0025], requires_grad=True) torch.Size([5])
tensor([[ 0.4785, -0.7011,  0.0464, -0.3521, -0.2145],
        [ 0.3342, -0.9147,  0.3201,  0.6359,  0.2411],
        [ 0.3518, -0.1693,  0.6793,  0.3893,  0.7366],
        [ 1.1320, -0.8723,  0.4811,  0.0100, -0.0978],
        [ 0.6753,  0.2851, -0.4163,  0.4748,  0.9103],
        [ 0.2818,  0.3825, -0.0851,  0.0638, -0.2460]],
       grad_fn=) torch.Size([6, 5])
tensor(0.4785, grad_fn=) tensor(-0.7011, grad_fn=)
Parameter containing:
tensor([[[[-0.0413]],

         [[ 0.0082]],

         [[-0.0213]],

         ...,

         [[ 0.0292]],

         [[-0.0219]],

         [[-0.0164]]],


        [[[ 0.0122]],

         [[ 0.0354]],

         [[ 0.0342]],

         ...,

         [[ 0.0375]],

         [[-0.0393]],

         [[-0.0441]]],


        [[[-0.0149]],

         [[ 0.0128]],

         [[ 0.0270]],

         ...,

         [[ 0.0256]],

         [[-0.0205]],

         [[-0.0129]]],


        [[[-0.0242]],

         [[ 0.0423]],

         [[ 0.0200]],

         ...,

         [[-0.0139]],

         [[ 0.0431]],

         [[ 0.0035]]],


        [[[-0.0167]],

         [[-0.0199]],

         [[-0.0111]],

         ...,

         [[-0.0115]],

         [[-0.0092]],

         [[-0.0038]]]], requires_grad=True) torch.Size([5, 512, 1, 1])
Parameter containing:
tensor([-0.0060, -0.0302, -0.0181, -0.0238, -0.0309], requires_grad=True) torch.Size([5])
tensor([[[[-7.7635e-04]],

         [[ 3.3419e-01]],

         [[ 3.7540e-02]],

         [[-3.2353e-01]],

         [[ 5.2627e-01]]],


        [[[ 7.9518e-01]],

         [[-1.4631e-01]],

         [[-1.2328e+00]],

         [[-6.2233e-01]],

         [[ 5.4902e-01]]],


        [[[ 1.0096e-01]],

         [[-4.3371e-02]],

         [[ 8.4562e-02]],

         [[ 2.9943e-01]],

         [[-5.8890e-01]]],


        [[[ 2.8188e-01]],

         [[ 7.7247e-02]],

         [[-1.1808e-01]],

         [[ 2.0405e-01]],

         [[-1.7719e-01]]],


        [[[ 1.9541e-01]],

         [[ 4.5732e-01]],

         [[-5.3517e-01]],

         [[ 3.3248e-01]],

         [[ 1.2848e-02]]],


        [[[-3.8311e-01]],

         [[-3.3499e-01]],

         [[ 9.1582e-01]],

         [[-4.8706e-01]],

         [[ 6.1926e-01]]]], grad_fn=) torch.Size([6, 5, 1, 1])
tensor(-0.0008, grad_fn=)
tensor(0.3342, grad_fn=)
tensor(0.6193, grad_fn=)

Process finished with exit code 0

可以发现,即使对于同一个输入张量,两个linear()层输出的结果不一样,应该和内部的权重、偏执初始化方式有关,这样的话,对于输入为(b,c,1,1)的linear()就相当于kernel_size = (1,1),padding = 0的conv2d()效果一样。

你可能感兴趣的:(python)