- 探秘 SELinux Notebook:安全增强的利器与实践指南
纪亚钧
探秘SELinuxNotebook:安全增强的利器与实践指南去发现同类优质开源项目:https://gitcode.com/在网络安全日益重要的今天,SELinux(Security-EnhancedLinux)作为Linux内核的安全模块,提供了强制访问控制机制,极大地增强了系统的安全性。而SELinuxNotebook则是为了帮助用户更好地理解和使用SELinux的一款交互式教程平台。它将复杂
- AI生成代码安全审计:从AST逆向到对抗样本生成
梦玄海
人工智能安全
引言随着Codex、Copilot等AI代码生成工具的普及,开发效率显著提升的同时,也引入了新型安全风险:模型生成的代码可能隐含漏洞(如SQL注入、XSS)、逻辑错误,或被恶意样本“投毒”。传统的静态扫描工具(如SonarQube)难以覆盖AI模型的上下文语义逻辑,亟需结合程序分析与AI对抗技术进行深度审计。本文将从AST逆向工程切入,深入探讨如何通过对抗样本检测AI生成代码的脆弱性。一、核心挑战
- Apache SeaTunnel Flink引擎执行流程源码分析
Code Monkey’s Lab
源码分析Flinkflink大数据架构seatunnel
目录1.任务启动入口2.任务执行命令类:FlinkTaskExecuteCommand3.FlinkExecution的创建与初始化3.1核心组件初始化3.2关键对象说明4.任务执行:FlinkExecution.execute()5.Source处理流程5.1插件初始化5.2数据流生成6.Transform处理流程6.1插件初始化6.2转换执行7.Sink处理流程7.1插件初始化7.2数据输出执
- 车联网网络安全渗透测试:深度解析与实践
ke0hly
web安全网络安全物联网安全架构安全威胁分析
引言随着汽车智能化、网联化程度的不断深入,车联网(IoV)已成为连接人、车、路、云的关键枢纽。然而,技术进步的同时也带来了前所未有的网络安全挑战。从车载系统到云端平台,从车内通信到V2X通信,车联网的每一个环节都可能成为潜在的攻击面,一旦被恶意利用,将直接威胁到驾乘人员的生命财产安全,甚至影响国家安全和公共秩序。因此,构建一套全面、深入、实战化的车联网网络安全渗透测试流程和方法,对于保障车联网的健
- 庙算兵棋推演AI开发初探(7-神经网络训练与评估概述)
超自然祈祷
智能决策人工智能神经网络深度学习
前面我们提取了特征做了数据集、设计并实现了处理数据集的神经网络,接下来我们需要训练神经网络了,就是把数据对接好灌进去,训练后查看预测的和实际的结果是否一致——也就是训练与评估。数据解析提取数据编码为数据集设计神经网络-->>神经网络训练与评估神经网络一个重要指标是收敛,就是用可以逼近任意函数的神经网络是否可以逼近你数据集中隐含的模式。再重复一遍【特征工程】与【神经网络】的区别:前者就像人发现了牛顿
- 我的世界进阶模组开发教程——机械动力的数据生成(1)
lemon_sjdk
我的世界
机械动力注册元素的方式是依赖registrateAPI来实现注册的,这个API和之前说的GlitchCore库所用的注册方式高效多了,不管是开发效率还是可维护性,都比bop式注册好多了,因此学习第三篇和第四篇文章是重中之重代码解析:Create模组主类(Create.java)核心字段解析基础标识字段ID="create":模组唯一标识符,用于资源定位(如create:gear)。NAME="Cr
- 我的世界1.20.1forge模组开发进阶教程——序列化(1)
lemon_sjdk
java我的世界mcforge模组开发序列化
mc的序列化在《Minecraft》(MC)中,序列化指将游戏数据(如方块、实体、玩家状态等)转换为可存储或传输的格式。这是游戏运行、存档保存和网络通信的关键技术。以下是Minecraft中常见的序列化方式及其用途:一、序列化在Minecraft中的作用存档数据持久化将玩家建筑、地图、物品栏等数据保存到硬盘(如.minecraft/saves中的区域文件)。网络传输服务器与客户端同步方块更新、实体
- 我的世界进阶模组开发教程——地形生成(1)
lemon_sjdk
我的世界forge模组开发进阶教程java
找到mc的屎山代码,找到net.minecraft.world.level.levelgen包,我们来看看mc是如何完成地形生成的SurfaceRules代码结构与核心功能解析该代码是Minecraft世界生成模块中地表规则(SurfaceRules)的核心实现,用于控制地形表面的方块生成逻辑。以下从多角度进行拆解分析:一、顶层结构解析1.静态条件定义(ConditionSource)public
- 浅谈卷积神经网络(CNN)
cyc&阿灿
cnn人工智能神经网络
卷积神经网络(ConvolutionalNeuralNetworks,CNN)作为深度学习领域最具影响力的架构之一,已在计算机视觉、自然语言处理、医学影像分析等领域取得了革命性突破。本文将系统全面地剖析CNN的核心原理、关键组件、经典模型、数学基础、训练技巧以及最新进展,通过理论解析与代码实践相结合的方式,帮助读者深入掌握这一重要技术。一、CNN基础与核心思想1.1传统神经网络的局限性在处理图像等
- 深入剖析 Linux 内核网络核心:sock.c 源码解析
109702008
编程#C语言网络linux网络人工智能
作为Linux网络子系统的基石,sock.c承载着协议无关的核心功能。本文将深入分析其关键实现,揭示高性能网络通信背后的设计哲学。一、Socket生命周期管理1.1初始化与分配sock_init_data()是socket的初始化入口,负责设置核心回调函数和默认参数:voidsock_init_data(structsocket*sock,structsock*sk){sk->sk_state=T
- 【第二章:机器学习与神经网络概述】03.类算法理论与实践-(3)决策树分类器
IT古董
人工智能课程机器学习算法神经网络
第二章:机器学习与神经网络概述第三部分:类算法理论与实践第三节:决策树分类器内容:信息增益、剪枝技术、过拟合与泛化能力。决策树是一种常用于分类和回归的树状结构模型,它通过一系列特征判断进行决策,有良好的可解释性。一、基本概念节点(Node):表示特征判断条件边(Branch):表示特征判断的结果路径叶子节点(Leaf):表示分类结果二、划分准则:信息增益(InformationGain)信息增益衡
- Alluxio在数据索引和模型分发中的核心价值与应用
Alluxio
人工智能深度学习机器学习
在当前的技术环境下,搜索、推荐、广告、大模型、自动驾驶等领域的业务依赖于海量数据的处理和复杂模型的训练。这些任务通常涉及从用户行为数据和社交网络数据中提取大量信息,进行模型训练和推理。这一过程需要强大的数据分发能力,尤其是在多个服务器同时拉取同一份数据时,更是考验基础设施的性能。在这样的背景下,AlluxioEnterpriseAI在数据索引与模型分发/部署方面展示了其独特的优势,特别是在处理海量
- Alluxio EnterpriseAI on K8s 部署教程
Alluxio
kubernetes容器云原生
AlluxioEnterpriseAIonK8s部署视频教程视频为AlluxioEnterpriseAIonK8s部署视频教程。下面内容将主要介绍如何通过Operator(Kubernetes管理应用程序的扩展)在Kubernetes上安装Alluxio。1.系统要求Kubernetes至少1.19版本的Kubernetes集群,支持特性门控确保集群的Kubernetes网络策略允许应用程序(Al
- Z-library数字图书馆镜像网址入口及客户端/app (持续更新)
黄豆匿zlib
学习
Z-Library(简称z-lib,前身为BookFinder)是一个影子图书馆和开放获取文件分享计划,用户可在此网络下载期刊文章以及各种类型的书籍。截止2022年6月12日,该网站共收录了10,456,034本书和84,837,646篇文章。zlibrary电脑客户端/安卓appzlibrary(windows/mac/安卓/ipad)安装包下载:夸克网盘分享(随时失效,先保存)无需魔法正常使用
- 我的世界模组开发进阶教程——机械动力的数据生成(2)
lemon_sjdk
我的世界模组开发java
==这篇文字继续来看看机械动力的数据生成==Create源码AssetLookupAssetLookup是Minecraft模组开发中用于简化数据生成的工具类,专注于自动处理方块(Block)和物品(Item)的模型(Model)文件路径生成与状态映射。其核心功能是根据规则动态构造资源路径,并适配不同状态(如供电状态、指示器数值)的模型。以下从两个维度详细解析:一、String...语法:Java
- 【目标检测】YOLOv13:超图增强的实时目标检测新标杆,值得收藏。
Carl_奕然
机器视觉与目标检测目标检测YOLO人工智能
一文掌握YOLOv13最新特性1、引言2、Yolov13详细讲解2.1发布时间与背景2.2相对于YOLOv12的核心提升2.2.1精度显著提升2.2.2轻量化与效率优化2.2.3高阶语义建模能力2.3架构设计与核心创新2.3.1超图自适应关联增强(HyperACE)2.3.2全流程聚合-分发(FullPAD)2.3.3轻量化模块设计2.4性能对比2.4代码示例2.4.1环境配置2.4.2训练代码2
- Python爬虫实战:研究Bleach库相关技术
ylfhpy
爬虫项目实战python爬虫php开发语言Bleach
1.引言在大数据时代,网络内容采集已成为信息获取的重要手段。Python凭借其丰富的爬虫库(如Requests、Scrapy)和灵活的数据处理能力,成为网页爬虫开发的首选语言。然而,从互联网获取的内容往往包含恶意脚本、不安全标签等安全隐患,直接使用可能导致XSS(跨站脚本攻击)、数据泄露等风险。Bleach作为专业的HTML净化库,通过白名单机制提供了可靠的内容安全过滤方案。本文将结合实际案例,详
- Python爬虫实战:研究untangle库相关技术
ylfhpy
爬虫项目实战python爬虫php开发语言untangle
1.引言在大数据时代,网络数据已成为重要的信息资源。XML和HTML作为互联网上最常用的数据表示格式,广泛应用于API接口、网站结构和数据交换等场景。Python凭借其丰富的爬虫库(如Requests、Scrapy)和灵活的数据处理能力,成为网络数据采集的首选语言。然而,从复杂的XML/HTML文档中提取结构化数据仍然面临诸多挑战,如文档结构多样性、动态内容渲染和数据格式转换等问题。Untangl
- 第 3 章:神经网络如何学习
鱼摆摆拜拜
神经网络学习人工智能
第3章:神经网络如何学习在第二章中,我们详细了解了神经网络的静态结构:由神经元组成的层,以及连接它们的权重和偏置。现在,我们将进入整个教程最核心的部分:神经网络是如何从数据中"学习"的?这个学习过程是一个动态的、不断调整自身参数以求更佳预测的过程。我们将通过四个关键概念来揭示这个秘密:前向传播(ForwardPropagation):数据如何通过网络产生一个预测?损失函数(LossFunction
- 【PyTorch】2024保姆级安装教程-Python-(CPU+GPU详细完整版)
金枝玉叶9
程序员知识储备1程序员知识储备2程序员知识储备3pythonpytorch人工智能
【PyTorch】2024保姆级安装教程(CPU+GPU详细完整版)PyTorch是当前最受欢迎的深度学习框架之一。本文将详细讲解在Python环境中安装PyTorch,包括CPU和GPU版本的全方位指南。一、前置环境首先确保已安装Python环境,推荐使用Python3.8或以上版本。验证Python安装:python--versionpip--version推荐使用虚拟环境(如conda或ve
- MSTP技术解析:提升网络负载均衡
Honey\
服务器运维
MSTP背景RSTP/STP的缺陷:RSTP/STP的被阻塞端口阻塞的链路不承载任何流量,无法实现数据的负载均衡;可能有二层次优路径MSTP:通过将一个或多个VLAN映射到instance上,再基于instance进行生成树的计算解决了二层环路问题;提供了二层网络冗余环境;实现流量的负载分担MSTP基本概念MSTRegion(多生成树域):MSTP网络中包含一个或多个MST域MSTI(多生成树实例
- RDKit:药物化学和分子数据处理的强大工具库
碳酸的唐
机器学习人工智能
引言在药物研发、化学信息学和分子设计领域,高效处理和分析分子数据是至关重要的。RDKit作为一个开源的化学信息学和机器学习工具包,为研究人员和数据科学家提供了丰富的功能,包括分子操作、描述符计算、指纹生成、相似性比较、子结构搜索和分子可视化等。本文将详细介绍RDKit的主要功能、应用场景以及实际操作示例,展示这一强大工具在分子数据处理中的核心价值。RDKit简介RDKit是一个由C++和Pytho
- LSNet: 基于侧向抑制的神经网络
碳酸的唐
模型养成与叙述有意思的py库神经网络人工智能深度学习
引言在计算机视觉领域,我们一直在寻找灵感来源以提高图像处理和识别的效果。而人类视觉系统作为经过数百万年进化的精密系统,无疑是最好的参考对象之一。今天,我要向大家介绍一个名为LSNet(LateralSuppressionNetwork,侧向抑制网络)的技术,它模拟了人类视觉系统中的侧向抑制机制,为计算机视觉任务带来了新的可能性。什么是侧向抑制?侧向抑制(LateralSuppression),也被
- Hightec生成tricore lib及lib的使用方法
赞哥哥s
Autosar笔记autosartc37xhightec
文章目录前言使用tricore-ar生成liboptionmodifier生成lib示例解压lib示例lib的使用总结前言之前介绍过GHS生成lib及使用lib的方法,链接:使用Greenhills生成Lib并使用Lib的两种方法本文基于TC3xx介绍Hightec生成lib及使用lib的方法,其他芯片也可以参考使用tricore-ar生成lib查阅HightecTricore编译器使用手册,知道
- 【网络安全】对称密码体制
Hacker_xingchen
web安全安全网络
1.对称密码体制概述1.1定义与特点对称密码体制,也称为单钥密码体制,是一种加密方法,其中加密和解密过程使用相同的密钥。这种加密方式的主要特点包括简单、高效和计算速度快,适合于大量数据的快速加密和解密。对称密码体制的安全性完全依赖于密钥的保密性,一旦密钥被泄露,加密的安全性就会受到威胁。效率:对称密码算法通常比非对称密码算法要快,因为它们的算法结构相对简单,计算量较小。密钥管理:对称密码体制的密钥
- 【网络安全】网络安全中的离散数学
flyair_China
安全架构
一、离散数学核心知识点与网络安全映射1.数论(NumberTheory)知识点安全应用场景实例说明质因数分解RSA公钥加密大整数分解难题(2048位密钥需数万年破解)模运算Diffie-Hellman密钥交换利用(gamodp)实现安全协商欧拉定理RSA加密/解密me*d≡m(modn)保障解密还原中国剩余定理高效解密优化RSA-CRT加速解密运算达70%2.代数结构(AlgebraicStruc
- RDK X5/X3 yolov5目标检测从环境搭建到设备集成
激萌の小宅
YOLOYOLO目标检测人工智能
1、RDKX5yolov5目标检测之训练环境搭建2、RDKX5yolov5目标检测之pt转onnx3、RDKX5yolov5目标检测之开发机环境部署4、RDKX5yolov5目标检测之onnx转bin5、RDKX5yolov5目标检测之开发板运行
- 口罩检测数据集-1591张图片疫情防控管理 智能门禁系统 公共场所安全监控
cver123
数据集目标跟踪人工智能计算机视觉目标检测pytorch
口罩检测数据集-1591张图片已发布目标检测数据集合集(持续更新)口罩检测数据集介绍数据集概览包含类别应用场景数据样本展示文件结构与使用建议使用建议技术标签YOLOv8训练实战1.环境配置安装YOLOv8官方库ultralytics2.数据准备2.1数据标注格式(YOLO)2.2文件结构示例2.3创建data.yaml配置文件3.模型训练关键参数补充说明:4.模型验证与测试4.1验证模型性能关键参
- 基于OpenCV图像分割与PyTorch的增强图像分类方案
从零开始学习人工智能
opencvpytorch分类
在图像分类任务中,背景噪声和复杂场景常常会对分类准确率产生负面影响。为了应对这一挑战,本文介绍了一种结合OpenCV图像分割与PyTorch深度学习框架的增强图像分类方案。通过先对图像进行分割提取感兴趣区域(RegionofInterest,ROI),再进行分类,可以有效减少背景干扰,突出关键特征,从而提高分类准确率。该方案在多种复杂场景下表现出色,尤其适用于图像背景复杂或包含多个对象的情况。一、
- 主流AI代码编程工具分享
scuter_yu
aiai编程
在当今数字化时代,AI代码编程工具已成为提升开发效率、优化代码质量的重要助手。这些工具利用人工智能技术,为开发者提供从代码生成、补全到调试、优化等一系列功能,极大地简化了编程流程,让编程变得更加高效、便捷和智能。以下将介绍几款热门的AI代码编程工具。通义灵码产品介绍:通义灵码是阿里云出品的基于通义大模型的智能编程辅助工具,提供行级/函数级实时续写、自然语言生成代码、单元测试生成、代码优化、注释生成
- 项目中 枚举与注解的结合使用
飞翔的马甲
javaenumannotation
前言:版本兼容,一直是迭代开发头疼的事,最近新版本加上了支持新题型,如果新创建一份问卷包含了新题型,那旧版本客户端就不支持,如果新创建的问卷不包含新题型,那么新旧客户端都支持。这里面我们通过给问卷类型枚举增加自定义注解的方式完成。顺便巩固下枚举与注解。
一、枚举
1.在创建枚举类的时候,该类已继承java.lang.Enum类,所以自定义枚举类无法继承别的类,但可以实现接口。
- 【Scala十七】Scala核心十一:下划线_的用法
bit1129
scala
下划线_在Scala中广泛应用,_的基本含义是作为占位符使用。_在使用时是出问题非常多的地方,本文将不断完善_的使用场景以及所表达的含义
1. 在高阶函数中使用
scala> val list = List(-3,8,7,9)
list: List[Int] = List(-3, 8, 7, 9)
scala> list.filter(_ > 7)
r
- web缓存基础:术语、http报头和缓存策略
dalan_123
Web
对于很多人来说,去访问某一个站点,若是该站点能够提供智能化的内容缓存来提高用户体验,那么最终该站点的访问者将络绎不绝。缓存或者对之前的请求临时存储,是http协议实现中最核心的内容分发策略之一。分发路径中的组件均可以缓存内容来加速后续的请求,这是受控于对该内容所声明的缓存策略。接下来将讨web内容缓存策略的基本概念,具体包括如如何选择缓存策略以保证互联网范围内的缓存能够正确处理的您的内容,并谈论下
- crontab 问题
周凡杨
linuxcrontabunix
一: 0481-079 Reached a symbol that is not expected.
背景:
*/5 * * * * /usr/IBMIHS/rsync.sh
- 让tomcat支持2级域名共享session
g21121
session
tomcat默认情况下是不支持2级域名共享session的,所有有些情况下登陆后从主域名跳转到子域名会发生链接session不相同的情况,但是只需修改几处配置就可以了。
打开tomcat下conf下context.xml文件
找到Context标签,修改为如下内容
如果你的域名是www.test.com
<Context sessionCookiePath="/path&q
- web报表工具FineReport常用函数的用法总结(数学和三角函数)
老A不折腾
Webfinereport总结
ABS
ABS(number):返回指定数字的绝对值。绝对值是指没有正负符号的数值。
Number:需要求出绝对值的任意实数。
示例:
ABS(-1.5)等于1.5。
ABS(0)等于0。
ABS(2.5)等于2.5。
ACOS
ACOS(number):返回指定数值的反余弦值。反余弦值为一个角度,返回角度以弧度形式表示。
Number:需要返回角
- linux 启动java进程 sh文件
墙头上一根草
linuxshelljar
#!/bin/bash
#初始化服务器的进程PId变量
user_pid=0;
robot_pid=0;
loadlort_pid=0;
gateway_pid=0;
#########
#检查相关服务器是否启动成功
#说明:
#使用JDK自带的JPS命令及grep命令组合,准确查找pid
#jps 加 l 参数,表示显示java的完整包路径
#使用awk,分割出pid
- 我的spring学习笔记5-如何使用ApplicationContext替换BeanFactory
aijuans
Spring 3 系列
如何使用ApplicationContext替换BeanFactory?
package onlyfun.caterpillar.device;
import org.springframework.beans.factory.BeanFactory;
import org.springframework.beans.factory.xml.XmlBeanFactory;
import
- Linux 内存使用方法详细解析
annan211
linux内存Linux内存解析
来源 http://blog.jobbole.com/45748/
我是一名程序员,那么我在这里以一个程序员的角度来讲解Linux内存的使用。
一提到内存管理,我们头脑中闪出的两个概念,就是虚拟内存,与物理内存。这两个概念主要来自于linux内核的支持。
Linux在内存管理上份为两级,一级是线性区,类似于00c73000-00c88000,对应于虚拟内存,它实际上不占用
- 数据库的单表查询常用命令及使用方法(-)
百合不是茶
oracle函数单表查询
创建数据库;
--建表
create table bloguser(username varchar2(20),userage number(10),usersex char(2));
创建bloguser表,里面有三个字段
&nbs
- 多线程基础知识
bijian1013
java多线程threadjava多线程
一.进程和线程
进程就是一个在内存中独立运行的程序,有自己的地址空间。如正在运行的写字板程序就是一个进程。
“多任务”:指操作系统能同时运行多个进程(程序)。如WINDOWS系统可以同时运行写字板程序、画图程序、WORD、Eclipse等。
线程:是进程内部单一的一个顺序控制流。
线程和进程
a. 每个进程都有独立的
- fastjson简单使用实例
bijian1013
fastjson
一.简介
阿里巴巴fastjson是一个Java语言编写的高性能功能完善的JSON库。它采用一种“假定有序快速匹配”的算法,把JSON Parse的性能提升到极致,是目前Java语言中最快的JSON库;包括“序列化”和“反序列化”两部分,它具备如下特征:  
- 【RPC框架Burlap】Spring集成Burlap
bit1129
spring
Burlap和Hessian同属于codehaus的RPC调用框架,但是Burlap已经几年不更新,所以Spring在4.0里已经将Burlap的支持置为Deprecated,所以在选择RPC框架时,不应该考虑Burlap了。
这篇文章还是记录下Burlap的用法吧,主要是复制粘贴了Hessian与Spring集成一文,【RPC框架Hessian四】Hessian与Spring集成
 
- 【Mahout一】基于Mahout 命令参数含义
bit1129
Mahout
1. mahout seqdirectory
$ mahout seqdirectory
--input (-i) input Path to job input directory(原始文本文件).
--output (-o) output The directory pathna
- linux使用flock文件锁解决脚本重复执行问题
ronin47
linux lock 重复执行
linux的crontab命令,可以定时执行操作,最小周期是每分钟执行一次。关于crontab实现每秒执行可参考我之前的文章《linux crontab 实现每秒执行》现在有个问题,如果设定了任务每分钟执行一次,但有可能一分钟内任务并没有执行完成,这时系统会再执行任务。导致两个相同的任务在执行。
例如:
<?
//
test
.php
- java-74-数组中有一个数字出现的次数超过了数组长度的一半,找出这个数字
bylijinnan
java
public class OcuppyMoreThanHalf {
/**
* Q74 数组中有一个数字出现的次数超过了数组长度的一半,找出这个数字
* two solutions:
* 1.O(n)
* see <beauty of coding>--每次删除两个不同的数字,不改变数组的特性
* 2.O(nlogn)
* 排序。中间
- linux 系统相关命令
candiio
linux
系统参数
cat /proc/cpuinfo cpu相关参数
cat /proc/meminfo 内存相关参数
cat /proc/loadavg 负载情况
性能参数
1)top
M:按内存使用排序
P:按CPU占用排序
1:显示各CPU的使用情况
k:kill进程
o:更多排序规则
回车:刷新数据
2)ulimit
ulimit -a:显示本用户的系统限制参
- [经营与资产]保持独立性和稳定性对于软件开发的重要意义
comsci
软件开发
一个软件的架构从诞生到成熟,中间要经过很多次的修正和改造
如果在这个过程中,外界的其它行业的资本不断的介入这种软件架构的升级过程中
那么软件开发者原有的设计思想和开发路线
- 在CentOS5.5上编译OpenJDK6
Cwind
linuxOpenJDK
几番周折终于在自己的CentOS5.5上编译成功了OpenJDK6,将编译过程和遇到的问题作一简要记录,备查。
0. OpenJDK介绍
OpenJDK是Sun(现Oracle)公司发布的基于GPL许可的Java平台的实现。其优点:
1、它的核心代码与同时期Sun(-> Oracle)的产品版基本上是一样的,血统纯正,不用担心性能问题,也基本上没什么兼容性问题;(代码上最主要的差异是
- java乱码问题
dashuaifu
java乱码问题js中文乱码
swfupload上传文件参数值为中文传递到后台接收中文乱码 在js中用setPostParams({"tag" : encodeURI( document.getElementByIdx_x("filetag").value,"utf-8")});
然后在servlet中String t
- cygwin很多命令显示command not found的解决办法
dcj3sjt126com
cygwin
cygwin很多命令显示command not found的解决办法
修改cygwin.BAT文件如下
@echo off
D:
set CYGWIN=tty notitle glob
set PATH=%PATH%;d:\cygwin\bin;d:\cygwin\sbin;d:\cygwin\usr\bin;d:\cygwin\usr\sbin;d:\cygwin\us
- [介绍]从 Yii 1.1 升级
dcj3sjt126com
PHPyii2
2.0 版框架是完全重写的,在 1.1 和 2.0 两个版本之间存在相当多差异。因此从 1.1 版升级并不像小版本间的跨越那么简单,通过本指南你将会了解两个版本间主要的不同之处。
如果你之前没有用过 Yii 1.1,可以跳过本章,直接从"入门篇"开始读起。
请注意,Yii 2.0 引入了很多本章并没有涉及到的新功能。强烈建议你通读整部权威指南来了解所有新特性。这样有可能会发
- Linux SSH免登录配置总结
eksliang
ssh-keygenLinux SSH免登录认证Linux SSH互信
转载请出自出处:http://eksliang.iteye.com/blog/2187265 一、原理
我们使用ssh-keygen在ServerA上生成私钥跟公钥,将生成的公钥拷贝到远程机器ServerB上后,就可以使用ssh命令无需密码登录到另外一台机器ServerB上。
生成公钥与私钥有两种加密方式,第一种是
- 手势滑动销毁Activity
gundumw100
android
老是效仿ios,做android的真悲催!
有需求:需要手势滑动销毁一个Activity
怎么办尼?自己写?
不用~,网上先问一下百度。
结果:
http://blog.csdn.net/xiaanming/article/details/20934541
首先将你需要的Activity继承SwipeBackActivity,它会在你的布局根目录新增一层SwipeBackLay
- JavaScript变换表格边框颜色
ini
JavaScripthtmlWebhtml5css
效果查看:http://hovertree.com/texiao/js/2.htm代码如下,保存到HTML文件也可以查看效果:
<html>
<head>
<meta charset="utf-8">
<title>表格边框变换颜色代码-何问起</title>
</head>
<body&
- Kafka Rest : Confluent
kane_xie
kafkaRESTconfluent
最近拿到一个kafka rest的需求,但kafka暂时还没有提供rest api(应该是有在开发中,毕竟rest这么火),上网搜了一下,找到一个Confluent Platform,本文简单介绍一下安装。
这里插一句,给大家推荐一个九尾搜索,原名叫谷粉SOSO,不想fanqiang谷歌的可以用这个。以前在外企用谷歌用习惯了,出来之后用度娘搜技术问题,那匹配度简直感人。
环境声明:Ubu
- Calender不是单例
men4661273
单例Calender
在我们使用Calender的时候,使用过Calendar.getInstance()来获取一个日期类的对象,这种方式跟单例的获取方式一样,那么它到底是不是单例呢,如果是单例的话,一个对象修改内容之后,另外一个线程中的数据不久乱套了吗?从试验以及源码中可以得出,Calendar不是单例。
测试:
Calendar c1 =
- 线程内存和主内存之间联系
qifeifei
java thread
1, java多线程共享主内存中变量的时候,一共会经过几个阶段,
lock:将主内存中的变量锁定,为一个线程所独占。
unclock:将lock加的锁定解除,此时其它的线程可以有机会访问此变量。
read:将主内存中的变量值读到工作内存当中。
load:将read读取的值保存到工作内存中的变量副本中。
- schedule和scheduleAtFixedRate
tangqi609567707
javatimerschedule
原文地址:http://blog.csdn.net/weidan1121/article/details/527307
import java.util.Timer;import java.util.TimerTask;import java.util.Date;
/** * @author vincent */public class TimerTest {
 
- erlang 部署
wudixiaotie
erlang
1.如果在启动节点的时候报这个错 :
{"init terminating in do_boot",{'cannot load',elf_format,get_files}}
则需要在reltool.config中加入
{app, hipe, [{incl_cond, exclude}]},
2.当generate时,遇到:
ERROR