static text
static text
{{message}}
static text
static text
自我介绍:大家好,我是吉帅振的网络日志;微信公众号:吉帅振的网络日志;前端开发工程师,工作4年,去过上海、北京,经历创业公司,进过大厂,现在郑州敲代码。
一、源码优化
首先是源码优化,也就是小右对于 Vue.js 框架本身开发的优化,它的目的是让代码更易于开发和维护。源码的优化主要体现在使用 monorepo 和 TypeScript 管理和开发源码,这样做的目标是提升自身代码可维护性。接下来我们就来看一下这两个方面的具体变化。
首先,源码的优化体现在代码管理方式上。Vue.js 2.x 的源码托管在 src 目录,然后依据功能拆分出了 compiler(模板编译的相关代码)、core(与平台无关的通用运行时代码)、platforms(平台专有代码)、server(服务端渲染的相关代码)、sfc(.vue 单文件解析相关代码)、shared(共享工具代码) 等目录:
而到了 Vue.js 3.0 ,整个源码是通过 monorepo 的方式维护的,根据功能将不同的模块拆分到 packages 目录下面不同的子目录中:
可以看出相对于 Vue.js 2.x 的源码组织方式,monorepo 把这些模块拆分到不同的 package 中,每个 package 有各自的 API、类型定义和测试。这样使得模块拆分更细化,职责划分更明确,模块之间的依赖关系也更加明确,开发人员也更容易阅读、理解和更改所有模块源码,提高代码的可维护性。
另外一些 package(比如 reactivity 响应式库)是可以独立于 Vue.js 使用的,这样用户如果只想使用 Vue.js 3.0 的响应式能力,可以单独依赖这个响应式库而不用去依赖整个 Vue.js,减小了引用包的体积大小,而 Vue.js 2 .x 是做不到这一点的。
其次,源码的优化还体现在 Vue.js 3.0 自身采用了 TypeScript 开发。Vue.js 1.x 版本的源码是没有用类型语言的,小右用 JavaScript 开发了整个框架,但对于复杂的框架项目开发,使用类型语言非常有利于代码的维护,因为它可以在编码期间帮你做类型检查,避免一些因类型问题导致的错误;也可以利于它去定义接口的类型,利于 IDE 对变量类型的推导。
因此在重构 2.0 的时候,小右选型了 Flow,但是在 Vue.js 3.0 的时候抛弃 Flow 转而采用 TypeScript 重构了整个项目,这里有两方面原因,接下来我们具体说一下。
首先,Flow 是 Facebook 出品的 JavaScript 静态类型检查工具,它可以以非常小的成本对已有的 JavaScript 代码迁入,非常灵活,这也是 Vue.js 2.0 当初选型它时一方面的考量。但是 Flow 对于一些复杂场景类型的检查,支持得并不好。记得在看 Vue.js 2.x 源码的时候,在某行代码的注释中看到了对 Flow 的吐槽,比如在组件更新 props 的地方出现了:
const propOptions: any = vm.$options.props // wtf flow?
什么意思呢?其实是由于这里 Flow 并没有正确推导出 vm.$options.props 的类型 ,开发人员不得不强制申明 propsOptions 的类型为 any,显得很不合理;另外他也在社区平台吐槽过 Flow 团队的烂尾。
其次,Vue.js 3.0 抛弃 Flow 后,使用 TypeScript 重构了整个项目。 TypeScript提供了更好的类型检查,能支持复杂的类型推导;由于源码就使用 TypeScript 编写,也省去了单独维护 d.ts 文件的麻烦;就整个 TypeScript 的生态来看,TypeScript 团队也是越做越好,TypeScript 本身保持着一定频率的迭代和更新,支持的 feature 也越来越多。
此外,小右和 TypeScript 团队也一直保持了良好的沟通,我们可以期待 TypeScript 对 Vue.js 的支持会越来越好。
性能优化一直是前端老生常谈的问题。那么对于 Vue.js 2.x 已经足够优秀的前端框架,它的性能优化可以从哪些方面进行突破呢?
首先是源码体积优化,我们在平时工作中也经常会尝试优化静态资源的体积,因为 JavaScript 包体积越小,意味着网络传输时间越短,JavaScript 引擎解析包的速度也越快。
那么,Vue.js 3.0 在源码体积的减少方面做了哪些工作呢?
首先,移除一些冷门的 feature(比如 filter、inline-template 等);
其次,引入 tree-shaking 的技术,减少打包体积。
第一点很好理解,所以这里我们来看看 tree-shaking,它的原理很简单,tree-shaking 依赖 ES2015 模块语法的静态结构(即 import 和 export),通过编译阶段的静态分析,找到没有引入的模块并打上标记。
举个例子,一个 math 模块定义了 2 个方法 square(x) 和 cube(x) :
export function square(x) {
return x * x
}
export function cube(x) {
return x * x * x
}
我们在这个模块外面只引入了 cube 方法:
import { cube } from './math.js'
// do something with cube
最终 math 模块会被 webpack 打包生成如下代码:
/***/ (function(module, __webpack_exports__, __webpack_require__) {
'use strict';
/* unused harmony export square */
/* harmony export (immutable) */ __webpack_exports__['a'] = cube;
function square(x) {
return x * x;
}
function cube(x) {
return x * x * x;
}
});
可以看到,未被引入的 square 模块被标记了, 然后压缩阶段会利用例如 uglify-js、terser 等压缩工具真正地删除这些没有用到的代码。
也就是说,利用 tree-shaking 技术,如果你在项目中没有引入 Transition、KeepAlive 等组件,那么它们对应的代码就不会打包,这样也就间接达到了减少项目引入的 Vue.js 包体积的目的。
其次是数据劫持优化。Vue.js 区别于 React 的一大特色是它的数据是响应式的,这个特性从 Vue.js 1.x 版本就一直伴随着,这也是 Vue.js 粉喜欢 Vue.js 的原因之一,DOM 是数据的一种映射,数据发生变化后可以自动更新 DOM,用户只需要专注于数据的修改,没有其余的心智负担。
在 Vue.js 内部,想实现这个功能是要付出一定代价的,那就是必须劫持数据的访问和更新。其实这点很好理解,当数据改变后,为了自动更新 DOM,那么就必须劫持数据的更新,也就是说当数据发生改变后能自动执行一些代码去更新 DOM,那么问题来了,Vue.js 怎么知道更新哪一片 DOM 呢?因为在渲染 DOM 的时候访问了数据,我们可以对它进行访问劫持,这样就在内部建立了依赖关系,也就知道数据对应的 DOM 是什么了。以上只是大体的思路,具体实现要比这更复杂,内部还依赖了一个 watcher 的数据结构做依赖管理,参考下图:
Vue.js 1.x 和 Vue.js 2.x 内部都是通过 Object.defineProperty 这个 API 去劫持数据的 getter 和 setter,具体是这样的:
Object.defineProperty(data, 'a',{
get(){
// track
},
set(){
// trigger
}
})
但这个 API 有一些缺陷,它必须预先知道要拦截的 key 是什么,所以它并不能检测对象属性的添加和删除。尽管 Vue.js 为了解决这个问题提供了 $set 和 $delete 实例方法,但是对于用户来说,还是增加了一定的心智负担。
另外 Object.defineProperty 的方式还有一个问题,举个例子,比如这个嵌套层级比较深的对象:
export default {
data: {
a: {
b: {
c: {
d: 1
}
}
}
}
}
由于 Vue.js 无法判断你在运行时到底会访问到哪个属性,所以对于这样一个嵌套层级较深的对象,如果要劫持它内部深层次的对象变化,就需要递归遍历这个对象,执行 Object.defineProperty 把每一层对象数据都变成响应式的。毫无疑问,如果我们定义的响应式数据过于复杂,这就会有相当大的性能负担。
为了解决上述 2 个问题,Vue.js 3.0 使用了 Proxy API 做数据劫持,它的内部是这样的:
observed = new Proxy(data, {
get() {
// track
},
set() {
// trigger
}
})
由于它劫持的是整个对象,那么自然对于对象的属性的增加和删除都能检测到。
但要注意的是,Proxy API 并不能监听到内部深层次的对象变化,因此 Vue.js 3.0 的处理方式是在 getter 中去递归响应式,这样的好处是真正访问到的内部对象才会变成响应式,而不是无脑递归,这样无疑也在很大程度上提升了性能,我会在后面分析响应式章节详细介绍它的具体实现原理。
最后是编译优化,为了便于理解,我们先来看一张图:
这是 Vue.js 2.x 从 new Vue 开始渲染成 DOM 的流程,上面说过的响应式过程就发生在图中的 init 阶段,另外 template compile to render function 的流程是可以借助 vue-loader 在 webpack 编译阶段离线完成,并非一定要在运行时完成。
所以想优化整个 Vue.js 的运行时,除了数据劫持部分的优化,我们可以在耗时相对较多的 patch 阶段想办法,Vue.js 3.0 也是这么做的,并且它通过在编译阶段优化编译的结果,来实现运行时 patch 过程的优化。
我们知道,通过数据劫持和依赖收集,Vue.js 2.x 的数据更新并触发重新渲染的粒度是组件级的:
虽然 Vue 能保证触发更新的组件最小化,但在单个组件内部依然需要遍历该组件的整个 vnode 树,举个例子,比如我们要更新这个组件:
static text
static text
{{message}}
static text
static text
整个 diff 过程如图所示:
可以看到,因为这段代码中只有一个动态节点,所以这里有很多 diff 和遍历其实都是不需要的,这就会导致 vnode 的性能跟模版大小正相关,跟动态节点的数量无关,当一些组件的整个模版内只有少量动态节点时,这些遍历都是性能的浪费。
而对于上述例子,理想状态只需要 diff 这个绑定 message 动态节点的 p 标签即可。
Vue.js 3.0 做到了,它通过编译阶段对静态模板的分析,编译生成了 Block tree。Block tree 是一个将模版基于动态节点指令切割的嵌套区块,每个区块内部的节点结构是固定的,而且每个区块只需要以一个 Array 来追踪自身包含的动态节点。借助 Block tree,Vue.js 将 vnode 更新性能由与模版整体大小相关提升为与动态内容的数量相关,这是一个非常大的性能突破,我会在后续的章节详细分析它是如何实现的。
除此之外,Vue.js 3.0 在编译阶段还包含了对 Slot 的编译优化、事件侦听函数的缓存优化,并且在运行时重写了 diff 算法,这些性能优化的内容我在后续特定的章节与你分享。
三、语法 API 优化:Composition API
除了源码和性能方面,Vue.js 3.0 还在语法方面进行了优化,主要是提供了 Composition API,那么我们一起来看一下它为我们提供了什么帮助。
在 Vue.js 1.x 和 2.x 版本中,编写组件本质就是在编写一个“包含了描述组件选项的对象”,我们把它称为 Options API,它的好处是在于写法非常符合直觉思维,对于新手来说这样很容易理解,这也是很多人喜欢 Vue.js 的原因之一。
Options API 的设计是按照 methods、computed、data、props 这些不同的选项分类,当组件小的时候,这种分类方式一目了然;但是在大型组件中,一个组件可能有多个逻辑关注点,当使用 Options API 的时候,每一个关注点都有自己的 Options,如果需要修改一个逻辑点关注点,就需要在单个文件中不断上下切换和寻找。
其次,是优化逻辑复用。
当我们开发项目变得复杂的时候,免不了需要抽象出一些复用的逻辑。在 Vue.js 2.x 中,我们通常会用 mixins 去复用逻辑,举一个鼠标位置侦听的例子,我们会编写如下函数 mousePositionMixin:
const mousePositionMixin = {
data() {
return {
x: 0,
y: 0
}
},
mounted() {
window.addEventListener('mousemove', this.update)
},
destroyed() {
window.removeEventListener('mousemove', this.update)
},
methods: {
update(e) {
this.x = e.pageX
this.y = e.pageY
}
}
}
export default mousePositionMixin
然后在组件中使用:
Mouse position: x {{ x }} / y {{ y }}
使用单个 mixin 似乎问题不大,但是当我们一个组件混入大量不同的 mixins 的时候,会存在两个非常明显的问题:命名冲突和数据来源不清晰。
首先每个 mixin 都可以定义自己的 props、data,它们之间是无感的,所以很容易定义相同的变量,导致命名冲突。另外对组件而言,如果模板中使用不在当前组件中定义的变量,那么就会不太容易知道这些变量在哪里定义的,这就是数据来源不清晰。但是Vue.js 3.0 设计的 Composition API,就很好地帮助我们解决了 mixins 的这两个问题。
我们来看一下在 Vue.js 3.0 中如何书写这个示例:
import { ref, onMounted, onUnmounted } from 'vue'
export default function useMousePosition() {
const x = ref(0)
const y = ref(0)
const update = e => {
x.value = e.pageX
y.value = e.pageY
}
onMounted(() => {
window.addEventListener('mousemove', update)
})
onUnmounted(() => {
window.removeEventListener('mousemove', update)
})
return { x, y }
}
这里我们约定 useMousePosition 这个函数为 hook 函数,然后在组件中使用:
Mouse position: x {{ x }} / y {{ y }}
可以看到,整个数据来源清晰了,即使去编写更多的 hook 函数,也不会出现命名冲突的问题。
Composition API 除了在逻辑复用方面有优势,也会有更好的类型支持,因为它们都是一些函数,在调用函数时,自然所有的类型就被推导出来了,不像 Options API 所有的东西使用 this。另外,Composition API 对 tree-shaking 友好,代码也更容易压缩。
虽然 Composition API 有诸多优势,它也不是一点缺点都没有,关于它的具体用法和设计原理,我们会在后续的章节详细说明。这里还需要说明的是,Composition API 属于 API 的增强,它并不是 Vue.js 3.0 组件开发的范式,如果你的组件足够简单,你还是可以使用 Options API。
总结
Vue.js 2.x 的发展历经了 3 年多的时间,用户众多,而且周边生态也已经非常完善了。通常 major 版本的升级会有很多 breaking change,这就意味着想从 2.x 升级到 3.0 的项目需要改代码,而且不仅仅项目的代码要修改,所依赖的周边生态也需要升级。这其实是一个相当大的工作量,也需要承担一定的风险,所以如果你的项目非常庞大且已经相对稳定,没有什么特别的痛点,那么升级要慎重。
Vue.js 3.0 使用 ES2015 的语法开发,有些 API 如 Proxy 是没有 polyfill 的,这就意味着官方需要单独出一个 IE11 compat 版本来支持 IE11。如果你的项目需要兼容 IE11,你就不得不小心使用某些 API,这也就带来了一些额外的心智负担。
因此可能在 Vue.js 3.0 出来的相当长的一段时间,复杂的大项目都不会考虑去升级,而一些小的、对浏览器兼容要求不高的新项目可以考虑尝鲜了。