遗传算法的Python实现(非线性函数优化问题为例)

1、遗传算法(GA)介绍

遗传算法(Genetic Algorithm,GA)最早是由美国的 John holland于20世纪70年代提出,该算法是根据大自然中生物体进化规律而设计提出的,是一种通过模拟自然进化过程搜索最优解的方法。

该算法通过数学的方式,利用计算机仿真运算,将问题的求解过程转换成类似生物进化中的染色体基因的交叉、变异等过程。在求解较为复杂的组合优化问题时,相对一些常规的优化算法,通常能够较快地获得较好的优化结果。遗传算法已被人们广泛地应用于组合优化、机器学习、信号处理、自适应控制和人工生命等领域。

(一)遗传算法流程:

遗传算法的Python实现(非线性函数优化问题为例)_第1张图片

(二)基本操作:

(1)编码

  • 用于将要解答的问题编码成染色体信息,便于后续运算
  • 编码方式:
    • 位串编码(二进制/Gray编码,存在搜索效率低的问题)
    • 实数编码(较为常用)

(2)适应度函数的尺度变换

  • 欺骗问题:函数值之间的差异太小,导致过早收敛
  • 解决方案:尺度变换
    • 线性变换(f’ = af + b)
    • 幂函数变换(f’ = f ^ k)
    • 指数变换(f’ = e ^ (-af))

(3)选择

  • 根据适应度进行染色体串的选择,适应度越高的染色体串被选上的概率越大(不是一定选上,可以解决牛顿下降法容易收敛到局部最优的缺点)
  • 个体选择的概率分配方法
    • 适应度比例(蒙特卡洛法):个体适应度 / 总体适应度之和
    • 排序法:分为线性排序和指数排序,后者可以扩大排名在前和在后的个体间的差距

(4)交叉

  • 对两条染色体进行交叉操作
  • 基本的交叉算子
    • 一点交叉:选择一个位点,将两条染色体在该位点后的片段进行交叉
    • 两点/多点交叉:选择多个位点,将位点间的片段进行交叉
    • 部分匹配交叉:用于旅行商问题等

(5)变异

  • 对染色体的某个基因进行变异
  • 变异方式
    • 位点变异:某个/每个位点以一定概率变异
    • 逆转变异:随机选两点,将两点间的基因逆序
    • 插入变异:随机选一个基因插入随机的插入点间
    • 互换变异:随机选两个基因进行简单互换
    • 移动变异:将某个基因向左/右移动随机位数

2、Python实现(非线性函数最优化问题为例)

(1)定义适应度函数

遗传算法的Python实现(非线性函数优化问题为例)_第2张图片

import math

def func(x, y):
    num = 6.452 * (x + 0.125 * y) * (math.cos(x) - math.cos(2 * y)) ** 2
    den = math.sqrt(0.8 + (x - 4.2) ** 2 + 2 * (y - 7) ** 2)
    return num / den + 3.226 * y

(2)初始化GeneticAlgorith类

class GeneticAlgorithm:
    def __init__(self, function, M, gen, Pc=0.85, Pm=0.05):
        """
        :param function: fitness function
        :param M: population
        :param gen: total generations
        :param Pc: probability of crossover
        :param Pm: probability of mutation
        """
        self.func = function
        self.Pc = Pc
        self.Pm = Pm
        self.M = M
        self.gen = gen
        self.dec_num = 3
        self.X = []
        self.Y = []
        self.chr = []
        self.f = []
        self.rank = []
        self.history = {
            'f': [],
            'x': [],
            'y': []
        }

(3)编码函数

定义编码方式:x, y => chromosome

  • 例:x=3.124, y=5.637, 则chromosome=“31245637”
    def num2str(self, num):
        # return str(int(num)) + str(int(num - int(num)) * 1e3)
        s = str(num).replace('.', '')
        s += '0' * abs(int(num) // 10 + 1 + self.dec_num - len(s))
        return s

    def encoder(self, x, y):
        chr_list = []
        for i in range(len(x)):
            chr = self.num2str(x[i]) + self.num2str(y[i])
            chr_list.append(chr)
        return chr_list

于此同时,定义编码方式所对应的解码方式:chromosome => x, y

    def str2num(self, s):
        num = int(s[:-self.dec_num]) + float(s[-self.dec_num:]) / 10 ** self.dec_num
        return round(num, self.dec_num)

    def decoder(self, chr):
        cut = int(len(chr[0]) / 2)
        x = [self.str2num(chr[i][:cut]) for i in range(len(chr))]
        y = [self.str2num(chr[i][cut:]) for i in range(len(chr))]
        return x, y

(4)选择后代染色体

这里以适应度比例作为选择方式,通过轮盘赌的方法随机选择M次,得到M个新后代(适应度比例越大,轮盘赌中随机数落在该扇区的概率就越大,被选中的概率就越高)

	from random import random

    def choose(self):
        # calculate percentage
        s = sum(self.f)
        p = [self.f[i] / s for i in range(self.M)]
        chosen = []
        # choose M times
        for i in range(self.M):
            cum = 0
            m = random()
            # Roulette
            for j in range(self.M):
                cum += p[j]
                if cum >= m:
                    chosen.append(self.chr[j])
                    break
        return chosen

(5)交叉

使用一点交叉作为交叉算子,对每两条染色体以Pc的概率进行交叉

	from random import randint

    def crossover(self, chr):
        crossed = []
        # if chr list is odd
        if len(chr) % 2:
            crossed.append(chr.pop())
        for i in range(0, len(chr), 2):
            a = chr[i]
            b = chr[i + 1]
            # 0.85 probability of crossover
            if random() < self.Pc:
                loc = randint(1, len(chr[i]) - 1)
                temp = a[loc:]
                a = a[:loc] + b[loc:]
                b = b[:loc] + temp
            # add to crossed
            crossed.append(a)
            crossed.append(b)
        return crossed

(6)变异

用位点变异的方法,对某条染色体的每一位基因以概率Pm进行变异,并确保变异后与变异前的基因不同

    def mutation(self, chr):
        res = []
        for i in chr:
            l = list(i)
            for j in range(len(l)):
                # 0.05 probability of mutation on each location
                if random() < self.Pm:
                    while True:
                        r = str(randint(0, 9))
                        if r != l[j]:
                            l[j] = r
                            break
            res.append(''.join(l))
        return res

(7)主函数

先对染色体种群进行初始化并编码,然后开始迭代进化:

  • 对每一代染色体计算相应的适应度值和排名,打印信息
  • 保存到history,便于后续绘制折线图
  • 进行染色体的选串复制、交叉与变异
  • 对染色体解码,完成一次迭代
    from random import uniform
    
    def run(self):
        # initialization
        x = []
        y = []
        for i in range(self.M):
            x.append(round(uniform(0, 10), self.dec_num))
            y.append(round(uniform(0, 10), self.dec_num))
        self.X = x
        self.Y = y
        self.chr = self.encoder(x, y)
        # iteration
        for iter in range(self.gen):
            self.f = [func(self.X[i], self.Y[i]) for i in range(self.M)]
            fitness_sort = sorted(enumerate(self.f), key=lambda x: x[1], reverse=True)
            # 1st : fitness[rank[0]]
            self.rank = [i[0] for i in fitness_sort]
            winner = self.f[self.rank[0]]
            print(f'Iter={iter + 1}, Max-Fitness={winner}')
            # save to history
            self.history['f'].append(winner)
            self.history['x'].append(self.X[self.rank[0]])
            self.history['y'].append(self.Y[self.rank[0]])
            # choose, crossover and mutation
            chosen = self.choose()
            crossed = self.crossover(chosen)
            self.chr = self.mutation(crossed)
            self.X, self.Y = self.decoder(self.chr)

(8)运行结果

实例化GeneticAlgorith类,设置种群数为10,迭代次数为100次

if __name__ == '__main__':
    # run
    ga = GeneticAlgorithm(func, 10, 100)
    ga.run()
    # plot
    plt.plot(ga.history['f'])
    plt.title('Fitness value')
    plt.xlabel('Iter')
    plt.show()

运行得到结果如下

遗传算法的Python实现(非线性函数优化问题为例)_第3张图片

每一次遗传算法的运算结果都可能有较大的不同,这跟初始种群的选取、交叉等操作有密切的联系,如果想提高稳定性可以进行参数的调整,如扩大种群的数量,增加迭代次数,选用不同的交叉、变异方法和相应的概率,以优化这一模型,得到更加理想的结果。

以上是遗传算法的Python实现,最后附上完整代码:

# -*- coding: utf-8 -*-
# @Author  : gyy
# @Email   : [email protected]
# @File    : GA.py

import math
import matplotlib.pyplot as plt
from random import random, randint, uniform

def func(x, y):
    num = 6.452 * (x + 0.125 * y) * (math.cos(x) - math.cos(2 * y)) ** 2
    den = math.sqrt(0.8 + (x - 4.2) ** 2 + 2 * (y - 7) ** 2)
    return num / den + 3.226 * y

class GeneticAlgorithm:
    def __init__(self, function, M, gen, Pc=0.85, Pm=0.05):
        """
        :param function: fitness function
        :param M: population
        :param gen: total generations
        :param Pc: probability of crossover
        :param Pm: probability of mutation
        """
        self.func = function
        self.Pc = Pc
        self.Pm = Pm
        self.M = M
        self.gen = gen
        self.dec_num = 3
        self.X = []
        self.Y = []
        self.chr = []
        self.f = []
        self.rank = []
        self.history = {
            'f': [],
            'x': [],
            'y': []
        }

    def num2str(self, num):
        # return str(int(num)) + str(int(num - int(num)) * 1e3)
        s = str(num).replace('.', '')
        s += '0' * abs(int(num) // 10 + 1 + self.dec_num - len(s))
        return s

    def encoder(self, x, y):
        chr_list = []
        for i in range(len(x)):
            chr = self.num2str(x[i]) + self.num2str(y[i])
            chr_list.append(chr)
        return chr_list

    def str2num(self, s):
        num = int(s[:-self.dec_num]) + float(s[-self.dec_num:]) / 10 ** self.dec_num
        return round(num, self.dec_num)

    def decoder(self, chr):
        cut = int(len(chr[0]) / 2)
        x = [self.str2num(chr[i][:cut]) for i in range(len(chr))]
        y = [self.str2num(chr[i][cut:]) for i in range(len(chr))]
        return x, y

    def choose(self):
        # calculate percentage
        s = sum(self.f)
        p = [self.f[i] / s for i in range(self.M)]
        chosen = []
        # choose M times
        for i in range(self.M):
            cum = 0
            m = random()
            # Roulette
            for j in range(self.M):
                cum += p[j]
                if cum >= m:
                    chosen.append(self.chr[j])
                    break
        return chosen

    def crossover(self, chr):
        crossed = []
        # if chr list is odd
        if len(chr) % 2:
            crossed.append(chr.pop())
        for i in range(0, len(chr), 2):
            a = chr[i]
            b = chr[i + 1]
            # 0.85 probability of crossover
            if random() < self.Pc:
                loc = randint(1, len(chr[i]) - 1)
                temp = a[loc:]
                a = a[:loc] + b[loc:]
                b = b[:loc] + temp
            # add to crossed
            crossed.append(a)
            crossed.append(b)
        return crossed

    def mutation(self, chr):
        res = []
        for i in chr:
            l = list(i)
            for j in range(len(l)):
                # 0.05 probability of mutation on each location
                if random() < self.Pm:
                    while True:
                        r = str(randint(0, 9))
                        if r != l[j]:
                            l[j] = r
                            break
            res.append(''.join(l))
        return res

    def run(self):
        # initialization
        x = []
        y = []
        for i in range(self.M):
            x.append(round(uniform(0, 10), self.dec_num))
            y.append(round(uniform(0, 10), self.dec_num))
        self.X = x
        self.Y = y
        self.chr = self.encoder(x, y)
        # iteration
        for iter in range(self.gen):
            self.f = [func(self.X[i], self.Y[i]) for i in range(self.M)]
            fitness_sort = sorted(enumerate(self.f), key=lambda x: x[1], reverse=True)
            # 1st : fitness[rank[0]]
            self.rank = [i[0] for i in fitness_sort]
            winner = self.f[self.rank[0]]
            print(f'Iter={iter + 1}, Max-Fitness={winner}')
            # save to history
            self.history['f'].append(winner)
            self.history['x'].append(self.X[self.rank[0]])
            self.history['y'].append(self.Y[self.rank[0]])
            # choose, crossover and mutation
            chosen = self.choose()
            crossed = self.crossover(chosen)
            self.chr = self.mutation(crossed)
            self.X, self.Y = self.decoder(self.chr)

if __name__ == '__main__':
    # run
    ga = GeneticAlgorithm(func, 10, 100)
    ga.run()
    # plot
    plt.plot(ga.history['f'])
    plt.title('Fitness value')
    plt.xlabel('Iter')
    plt.show()

你可能感兴趣的:(python算法,python,算法)