【深度学习】PyTorch 常用 Tricks 总结

作者:z.defying

转载自:Datawhale

【深度学习】PyTorch 常用 Tricks 总结_第1张图片

目录:

1 指定GPU编号

2 查看模型每层输出详情

3 梯度裁剪

4 扩展单张图片维度

5 独热编码

6 防止验证模型时爆显存

7 学习率衰减

8 冻结某些层的参数

9 对不同层使用不同学习率

1. 指定GPU编号

设置当前使用的GPU设备仅为0号设备,设备名称为 /gpu:0
os.environ["CUDA_VISIBLE_DEVICES"] = "0"

设置当前使用的GPU设备为0, 1号两个设备,名称依次为 /gpu:0/gpu:1: 
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1" ,根据顺序表示优先使用0号设备,然后使用1号设备。

指定GPU的命令需要放在和神经网络相关的一系列操作的前面。

2. 查看模型每层输出详情

Keras有一个简洁的API来查看模型的每一层输出尺寸,这在调试网络时非常有用。现在在PyTorch中也可以实现这个功能。

使用很简单,如下用法:

from torchsummary import summary
summary(your_model, input_size=(channels, H, W))

input_size 是根据你自己的网络模型的输入尺寸进行设置。

https://github.com/sksq96/pytorch-summary

3. 梯度裁剪(Gradient Clipping)

import torch.nn as nn


outputs = model(data)
loss= loss_fn(outputs, target)
optimizer.zero_grad()
loss.backward()
nn.utils.clip_grad_norm_(model.parameters(), max_norm=20, norm_type=2)
optimizer.step()

nn.utils.clip_grad_norm_ 的参数:

  • parameters – 一个基于变量的迭代器,会进行梯度归一化

  • max_norm – 梯度的最大范数

  • norm_type – 规定范数的类型,默认为L2

知乎用户 @不椭的椭圆 提出:梯度裁剪在某些任务上会额外消耗大量的计算时间。

4. 扩展单张图片维度

因为在训练时的数据维度一般都是 (batch_size, c, h, w),而在测试时只输入一张图片,所以需要扩展维度,扩展维度有多个方法:

import cv2
import torch


image = cv2.imread(img_path)
image = torch.tensor(image)
print(image.size())


img = image.view(1, *image.size())
print(img.size())


# output:
# torch.Size([h, w, c])
# torch.Size([1, h, w, c])

import cv2
import numpy as np


image = cv2.imread(img_path)
print(image.shape)
img = image[np.newaxis, :, :, :]
print(img.shape)


# output:
# (h, w, c)
# (1, h, w, c)

或(感谢知乎用户 @coldleaf 的补充)

import cv2
import torch


image = cv2.imread(img_path)
image = torch.tensor(image)
print(image.size())


img = image.unsqueeze(dim=0)  
print(img.size())


img = img.squeeze(dim=0)
print(img.size())


# output:
# torch.Size([(h, w, c)])
# torch.Size([1, h, w, c])
# torch.Size([h, w, c])

tensor.unsqueeze(dim):扩展维度,dim指定扩展哪个维度。

tensor.squeeze(dim):去除dim指定的且size为1的维度,维度大于1时,squeeze()不起作用,不指定dim时,去除所有size为1的维度。

5. 独热编码

在PyTorch中使用交叉熵损失函数的时候会自动把label转化成onehot,所以不用手动转化,而使用MSE需要手动转化成onehot编码。

import torch
class_num = 8
batch_size = 4


def one_hot(label):
    """
    将一维列表转换为独热编码
    """
    label = label.resize_(batch_size, 1)
    m_zeros = torch.zeros(batch_size, class_num)
    # 从 value 中取值,然后根据 dim 和 index 给相应位置赋值
    onehot = m_zeros.scatter_(1, label, 1)  # (dim,index,value)


    return onehot.numpy()  # Tensor -> Numpy


label = torch.LongTensor(batch_size).random_() % class_num  # 对随机数取余
print(one_hot(label))


# output:
[[0. 0. 0. 1. 0. 0. 0. 0.]
 [0. 0. 0. 0. 1. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 0.]
 [0. 1. 0. 0. 0. 0. 0. 0.]]

https://discuss.pytorch.org/t/convert-int-into-one-hot-format/507/3

6. 防止验证模型时爆显存

验证模型时不需要求导,即不需要梯度计算,关闭autograd,可以提高速度,节约内存。如果不关闭可能会爆显存。

with torch.no_grad():
    # 使用model进行预测的代码
    pass

感谢知乎用户 @zhaz 的提醒,我把 torch.cuda.empty_cache() 的使用原因更新一下。

这是原回答:

Pytorch 训练时无用的临时变量可能会越来越多,导致 out of memory ,可以使用下面语句来清理这些不需要的变量。

官网上的解释为:

Releases all unoccupied cached memory currently held by the caching allocator so that those can be used in other GPU application and visible innvidia-smi.torch.cuda.empty_cache()

意思就是PyTorch的缓存分配器会事先分配一些固定的显存,即使实际上tensors并没有使用完这些显存,这些显存也不能被其他应用使用。这个分配过程由第一次CUDA内存访问触发的。

而 torch.cuda.empty_cache() 的作用就是释放缓存分配器当前持有的且未占用的缓存显存,以便这些显存可以被其他GPU应用程序中使用,并且通过 nvidia-smi命令可见。注意使用此命令不会释放tensors占用的显存。

对于不用的数据变量,Pytorch 可以自动进行回收从而释放相应的显存。

更详细的优化可以查看:
优化显存使用:
https://blog.csdn.net/qq_28660035/article/details/80688427
显存利用问题:
https://oldpan.me/archives/pytorch-gpu-memory-usage-track

7. 学习率衰减

import torch.optim as optim
from torch.optim import lr_scheduler


# 训练前的初始化
optimizer = optim.Adam(net.parameters(), lr=0.001)
scheduler = lr_scheduler.StepLR(optimizer, 10, 0.1)  # # 每过10个epoch,学习率乘以0.1


# 训练过程中
for n in n_epoch:
    scheduler.step()
    ...

8. 冻结某些层的参数

参考:Pytorch 冻结预训练模型的某一层
https://www.zhihu.com/question/311095447/answer/589307812

在加载预训练模型的时候,我们有时想冻结前面几层,使其参数在训练过程中不发生变化。

我们需要先知道每一层的名字,通过如下代码打印:

net = Network()  # 获取自定义网络结构
for name, value in net.named_parameters():
    print('name: {0},\t grad: {1}'.format(name, value.requires_grad))

假设前几层信息如下:

name: cnn.VGG_16.convolution1_1.weight,   grad: True
name: cnn.VGG_16.convolution1_1.bias,   grad: True
name: cnn.VGG_16.convolution1_2.weight,   grad: True
name: cnn.VGG_16.convolution1_2.bias,   grad: True
name: cnn.VGG_16.convolution2_1.weight,   grad: True
name: cnn.VGG_16.convolution2_1.bias,   grad: True
name: cnn.VGG_16.convolution2_2.weight,   grad: True
name: cnn.VGG_16.convolution2_2.bias,   grad: True

后面的True表示该层的参数可训练,然后我们定义一个要冻结的层的列表:

no_grad = [
    'cnn.VGG_16.convolution1_1.weight',
    'cnn.VGG_16.convolution1_1.bias',
    'cnn.VGG_16.convolution1_2.weight',
    'cnn.VGG_16.convolution1_2.bias'
]

冻结方法如下:

net = Net.CTPN()  # 获取网络结构
for name, value in net.named_parameters():
    if name in no_grad:
        value.requires_grad = False
    else:
        value.requires_grad = True

冻结后我们再打印每层的信息:

name: cnn.VGG_16.convolution1_1.weight,   grad: False
name: cnn.VGG_16.convolution1_1.bias,   grad: False
name: cnn.VGG_16.convolution1_2.weight,   grad: False
name: cnn.VGG_16.convolution1_2.bias,   grad: False
name: cnn.VGG_16.convolution2_1.weight,   grad: True
name: cnn.VGG_16.convolution2_1.bias,   grad: True
name: cnn.VGG_16.convolution2_2.weight,   grad: True
name: cnn.VGG_16.convolution2_2.bias,   grad: True

可以看到前两层的weight和bias的requires_grad都为False,表示它们不可训练。

最后在定义优化器时,只对requires_grad为True的层的参数进行更新。

optimizer = optim.Adam(filter(lambda p: p.requires_grad, net.parameters()), lr=0.01)

9. 对不同层使用不同学习率

我们对模型的不同层使用不同的学习率。

还是使用这个模型作为例子:

net = Network()  # 获取自定义网络结构
for name, value in net.named_parameters():
    print('name: {}'.format(name))


# 输出:
# name: cnn.VGG_16.convolution1_1.weight
# name: cnn.VGG_16.convolution1_1.bias
# name: cnn.VGG_16.convolution1_2.weight
# name: cnn.VGG_16.convolution1_2.bias
# name: cnn.VGG_16.convolution2_1.weight
# name: cnn.VGG_16.convolution2_1.bias
# name: cnn.VGG_16.convolution2_2.weight
# name: cnn.VGG_16.convolution2_2.bias

对 convolution1 和 convolution2 设置不同的学习率,首先将它们分开,即放到不同的列表里:

conv1_params = []
conv2_params = []


for name, parms in net.named_parameters():
    if "convolution1" in name:
        conv1_params += [parms]
    else:
        conv2_params += [parms]


# 然后在优化器中进行如下操作:
optimizer = optim.Adam(
    [
        {"params": conv1_params, 'lr': 0.01},
        {"params": conv2_params, 'lr': 0.001},
    ],
    weight_decay=1e-3,
)

我们将模型划分为两部分,存放到一个列表里,每部分就对应上面的一个字典,在字典里设置不同的学习率。当这两部分有相同的其他参数时,就将该参数放到列表外面作为全局参数,如上面的`weight_decay`。

也可以在列表外设置一个全局学习率,当各部分字典里设置了局部学习率时,就使用该学习率,否则就使用列表外的全局学习率。

 
   
 
   
 
   
 
   
 
   
往期精彩回顾




适合初学者入门人工智能的路线及资料下载(图文+视频)机器学习入门系列下载中国大学慕课《机器学习》(黄海广主讲)机器学习及深度学习笔记等资料打印《统计学习方法》的代码复现专辑机器学习交流qq群955171419,加入微信群请扫码:

【深度学习】PyTorch 常用 Tricks 总结_第2张图片

你可能感兴趣的:(人工智能,python,深度学习,java,机器学习)