两个重要极限及其推导过程

一、 \lim_{x\rightarrow 0}\tfrac{sinx}{x}=1 

证明:由上图可知,sinx<x<tanx

          \therefore 1<\tfrac{x}{sinx}<\tfrac{1}{cosx}

          即 cosx<\tfrac{sinx}{x}<1

          \because \lim_{x\rightarrow 0}cosx=1

          \therefore\lim_{x\rightarrow 0}\tfrac{sinx}{x}=1 

二、 \lim_{x\rightarrow\infty}\left ( 1+\tfrac{1}{x} \right )^{x}=e

证明:首先证明此极限存在

          构造数列 x_{n}=\left(1+\frac{1}{n} \right )^{n}

           x_n=1+C_{n}^{1}\frac{1}{n}+C_{n}^{2}\frac{1}{n^2}+C_{n}^{3}\frac{1}{n^3}+...+C_{n}^{n}\frac{1}{n^n}\\

                =1+n\cdot \frac{1}{n}+\frac{n\left ( n-1 \right )}{2!}\cdot \frac{1}{n^2}+ \frac{n\left ( n-1 \right )\left ( n-2 \right )}{3!}\cdot \frac{1}{n^3}+\cdot\cdot\cdot+ \frac{n\left ( n-1 \right )\left ( n-2 \right )\cdot\cdot\cdot1}{n!}\cdot \frac{1}{n^n}

                =1+1+\frac{1}{2!}\cdot\left(1- \frac{1}{n}\right )+\frac{1}{3!}\cdot\left(1-\frac{1}{n} \right )\left(1-\frac{2}{n} \right )+\cdot\cdot\cdot+\frac{1}{n!}\cdot\left(1-\frac{1}{n} \right )\left(1-\frac{2}{n} \right )\cdot\cdot\cdot\left(1-\frac{n-1}{n} \right )

                <2+\frac{1}{2!}+\frac{1}{3!}+\cdot\cdot\cdot +\frac{1}{n!}

               <2+\frac{1}{2}+\frac{1}{2^2}+\cdot\cdot\cdot++\frac{1}{2^{n-1}}

              =3-\frac{1}{2^{n-1}}

              <3

          而对于n+1

          x_{n+1}=\left(1+\frac{1}{n+1} \right )^{n+1}

                   =1+1+\frac{1}{2!}\cdot\left(1- \frac{1}{n+1}\right )+\frac{1}{3!}\cdot\left(1-\frac{1}{n+1} \right )\left(1-\frac{2}{n+1} \right )+\cdot\cdot\cdot+      

                       \frac{1}{n!}\cdot\left(1- \frac{1}{n+1}\right )\left(1-\frac{2}{n+1} \right )\cdot\cdot\cdot\left(1-\frac{n-1}{n+1} \right )+   

                       \frac{1}{\left(n+1 \right )!}\cdot\left(1- \frac{1}{n+1}\right )\left(1-\frac{2}{n+1} \right )\cdot\cdot\cdot\left(1-\frac{n-1}{n+1} \right )\left(1-\frac{n}{n+1} \right )

                   >x_n

          由单调有界数列必有极限可知,数列x_{n}=\left(1+\frac{1}{n} \right )^{n}的极限一定存在。

         记此极限为 e

          对于实数 x,则总存在整数n,使得n\leqslant x\leqslant{n+1}

          则有 \left(1+\frac{1}{n+1} \right )^n < \left(1+\frac{1}{x} \right )^x < \left(1+\frac{1}{n} \right )^{n+1}

          \lim_{n\rightarrow\infty}\left(1+\frac{1}{n+1} \right )^n = \lim_{n\rightarrow\infty}\frac{\left(1+\frac{1}{n+1} \right )^{n+1}}{\left(1+\frac{1}{n+1} \right )}=\frac{\lim_{x\rightarrow\infty}\left(1+\frac{1}{n+1} \right )^{n+1}}{\lim_{x\rightarrow\infty}\left(1+\frac{1}{n+1} \right )}

                                         =\frac{e}{1+0}=e

           \lim_{n\rightarrow\infty}\left(1+\frac{1}{n} \right )^{n+1} = \lim_{n\rightarrow\infty}\left(\left(1+\frac{1}{n} \right )^{n} \left(1+\frac{1}{n} \right ) \right )

                                       = \lim_{n\rightarrow\infty}\left(1+\frac{1}{n} \right )^{n} \lim_{n\rightarrow\infty}\left(1+\frac{1}{n} \right )

                                       =e\cdot\left(1+0 \right )

                                       =e

          根据两边夹定理,函数 f(x)=\lim_{x\rightarrow\infty}\left ( 1+\tfrac{1}{x} \right )^{x}的极限存在,为e

你可能感兴趣的:(数学)