- 【机器学习与数据挖掘实战 | 医疗】案例18:基于Apriori算法的中医证型关联规则分析
Francek Chen
机器学习与数据挖掘实战机器学习数据挖掘Aprioripython关联规则人工智能
【作者主页】FrancekChen【专栏介绍】⌈⌈⌈机器学习与数据挖掘实战⌋⌋⌋机器学习是人工智能的一个分支,专注于让计算机系统通过数据学习和改进。它利用统计和计算方法,使模型能够从数据中自动提取特征并做出预测或决策。数据挖掘则是从大型数据集中发现模式、关联和异常的过程,旨在提取有价值的信息和知识。机器学习为数据挖掘提供了强大的分析工具,而数据挖掘则是机器学习应用的重要领域,两者相辅相成,共同推动
- MATLAB实现WOA-BP鲸鱼优化算法优化BP神经网络多输入单输出回归预测(含模型描述及示例代码)
nantangyuxi
MATLAB含模型描述及示例代码算法matlab神经网络大数据人工智能深度学习机器学习
目录MATLAB实现WOA-BP鲸鱼优化算法优化BP神经网络多输入单输出回归预测(多指标,多图)1项目背景介绍...1项目目标与意义...2项目挑战...3项目特点与创新...5<
- 蔡高厅老师 - 高等数学-阅读笔记 - 01 - 前言、函数【视频第01、02、03、】
Franklin
数学线性代数
高等数学前言;196学时,每周6课主要内容:上册一元、多元函数数,微分学、积分学、矢量代数、空间解析几何无穷级数、微分方程,多元函数微分学和积分学目的:高等数学3基:1高等数学的基本知识2高度数学的基本理论3高等数学的基本计算方法提高数学素养培养:抽象思维、逻辑推理、辩证的思想方法、空间想象能力、分析问题、解决问题的能力为进一步学习打下必要的学习基础和初等数学不同,研究的不是常量而是变量,变量和变
- Python爬虫实战:研究TextBlob相关技术
ylfhpy
爬虫项目实战python爬虫开发语言htmlTextBlob
1.引言1.1研究背景与意义随着互联网技术的飞速发展,社交媒体已成为人们获取信息和表达观点的重要平台。每天在社交媒体上产生的海量文本数据蕴含着丰富的情感信息和社会舆情,分析这些文本情感倾向,有助于企业了解消费者对产品和服务的评价,政府部门监测社会舆论动态,研究机构探索公众对热点事件的态度。情感分析(SentimentAnalysis)作为自然语言处理的重要分支,旨在通过计算方法识别和提取文本中的主
- c语言opencv所用库函数,Py之cv2:cv2库(OpenCV,opencv-python)的简介、安装、使用方法(常见函数、方法等)最强详细攻略...
weixin_39729272
c语言opencv所用库函数
##关于OpenCV简介##OpenCV是一个基于BSD许可(开源)发行的跨平台计算机视觉库,可以运行在Linux、Windows、Android和MacOS操作系统上。它轻量级而且高效——由一系列C函数和少量C++类构成,同时提供了Python、Ruby、MATLAB等语言的接口,实现了图像处理和计算机视觉方面的很多通用算法。OpenCV用C++语言编写,它的主要接口也是C++语言,但是依然保留
- 线性代数和c语言先学哪个,线性代数和哪个更有用?
段丞博
线性代数和c语言先学哪个
一、从数学与应用数学这个专业来分析下“线性代数”和“高等数学”这两块的内容,无论哪块知识在“考研究生数学科目中的考试”都会涉汲到的,而且有些专业的考试也包括概率论与数理统计这块知识。线性代数和哪个更有用?1、线性代数内容:行列式、矩阵、向量、线性方程组、特征值和特征向量、二次型。2、高等数学内容:函数·极限·连续、导数与微分、不定积分、定积分及广义积分、中值定理的证明、常微分方程、一元微积分的应用
- 数学实验matlab课后习题,数学实验练习题(MATLAB)
沈洲行
数学实验matlab课后习题
注意:在下面的题目中m为你的学号的后3位(1-9班)或4位(10班以上).第一次练习题1.求解下列各题:1)30sinlimxmxmxx->-2)(4)cos,1000.0=xmxyey求3)21/20mxedx?(求近似值,可以先用inline定义被积函数,然后用quad命令)4)4224xdxmx+?50x=展开(最高次幂为8).2.对矩阵21102041Am-???=??-??,分别求逆矩阵
- spf算法概述
香蕉割草机
网络通信spf路由
文章目录1.算法概念2.具体计算方法3.spf算法能保证最短路径的原因4.路由计算spf算法即shortestpathfirst算法–最短路径优先算法,Dijkstra算法是典型最短路径算法,用于计算一个节点到其他节点的最短路径,它的主要特点是以起始点为中心向外层层扩展(广度优先搜索思想),直到扩展到终点为止。路由协议中的isis和ospf都使用spf算法计算路由,目的很明确,就是计算路由器自身所
- 基于小波变换的数字信号调制识别
yong9990
matlab
基于小波变换的数字信号调制识别,通过matlab实现am_ofdm_classification.m,2926dvbt_table_gen.m,16437guard_interval.m,8441pilot_imag.m,9196pilot_real.m,9308randomization.m,9204sc_ofdm_wavelet.m,3439source.m,8486test_sc1.m,34
- MATLAB安装过程中源文件服务器不可达的核心问题与解决方案
百态老人
matlab服务器php
一、核心问题分析在MATLAB网络安装过程中,源文件服务器不可达可能由以下因素导致:网络连接问题网络不稳定或完全中断,导致安装程序无法访问MathWorks服务器。本地网络配置(如DNS解析错误、代理设置不当)影响连接。防火墙/安全软件拦截操作系统防火墙或第三方防病毒软件(如Symantec、McAfee)可能阻止MATLAB访问必要端口。某些安全软件将安装程序误判为威胁,直接中断连接。VPN或代
- LightGBM:极速梯度提升机——结构化数据建模的终极武器
大千AI助手
人工智能Python#OTHER随机森林算法机器学习决策树人工智能GBDTLightGBM
基于直方图与Leaf-wise生长的高效GBDT实现,横扫Kaggle与工业场景一、为什么需要LightGBM?GBDT的瓶颈传统梯度提升树(如XGBoost)在处理海量数据时面临两大痛点:训练速度慢:需预排序特征&层次生长(Level-wise)内存消耗高:存储特征值与分裂点信息LightGBM的诞生微软亚洲研究院于2017年开源,核心目标:✅训练效率提升10倍✅内存占用降低50%✅保持与XGB
- 水文学模型学习笔记:马斯京根(Muskingum)河道汇流算法
Lunar*
水文算法学习笔记
引言在水文学和水资源管理中,河道汇流演算是一个至关重要的环节。它用于预测洪水波在河道中向下游传播时的形态变化,是进行洪水预报、水库调度和防洪规划的基础。马斯京根法(MuskingumMethod)是其中最经典和应用最广泛的河道汇流计算方法之一。本文将从马斯京根法的基础理论出发,推导其演算方程,并重点解析一种更稳定和精确的改进方法——分段连续马斯京根法,最后提供并解读一个完整、鲁棒的Python实现
- 【教程4>第7章>第23节】基于FPGA的RS(204,188)译码verilog实现7——欧几里得迭代算法模块
fpga和matlab
#第7章·通信—信道编译码fpga开发RS译码欧几里得迭代教程4
目录1.软件版本2.RS译码器逆元欧几里得算法模块原理分析3.RS译码器逆元欧几里得算法模块的verilog实现3.1RS译码器逆元欧几里得算法模块verilog程序3.2程序解析欢迎订阅FPGA/MATLAB/Simulink系列教程《★教程1:matlab入门100例》《★教程2:fpga入门100例》《★教程3:simulink入门60例》
- SciPy稀疏特征值问题:ARPACK库应用详解
SciPy稀疏特征值问题:ARPACK库应用详解关键词:SciPy、稀疏特征值问题、ARPACK库、特征值求解、数值计算摘要:本文主要深入探讨了在SciPy中处理稀疏特征值问题时ARPACK库的应用。我们将从基础概念入手,用通俗易懂的方式解释什么是稀疏特征值问题以及ARPACK库的作用。接着详细介绍核心算法原理和具体操作步骤,通过Python代码示例进行展示。还会结合实际应用场景,探讨其未来发展趋
- 一套基于粒子群优化(PSO)算法的天线波束扫描MATLAB实现方案
pk_xz123456
MATLAB深度学习算法算法matlab人工智能制造开发语言分类
以下是一套基于粒子群优化(PSO)算法的天线波束扫描MATLAB实现方案,包含完整代码、数学原理和详细注释。该方案针对均匀线性阵列(ULA)的波束方向图优化,通过调整阵元相位实现主瓣指向目标方向并抑制旁瓣。%%天线波束扫描的PSO算法实现%作者:DeepSeek%创建日期:2025-06-21%功能:使用PSO优化均匀线性阵列的相位分布,实现波束扫描和旁瓣抑制clc;clear;closeall;
- MATLAB中的size函数
不知更鸟
matlab
**MATLAB中的size函数用于获取矩阵或数组的维度信息,包括行数和列数**。以下是对size函数的详细解析:1.**基本用法**:当仅有一个输出参数时,`s=size(A)`会返回一个行向量,其中第一个元素是矩阵的行数,第二个元素是矩阵的列数Θic-1ΘΘic-2ΘΘic-3Θ。例如,对于二维矩阵`A`,`size(A)`返回的是`[m,n]`,表示`A`是一个`m`行`n`列的矩阵。2.*
- matlab瞬变电磁时域有限差分方法
xx155802862xx
matlab开发语言
瞬变电磁时域有限差分方法MATLAB数值仿真教程程序codelisting/Appendix_A/fdtd_1d_code.m,3184codelisting/Appendix_A/initialize_plotting_parameters.m,836codelisting/Appendix_A/plot_fields.m,353codelisting/Appendix_C/polar_plot
- 探秘算法世界:随机近似算法与时序差分法的原理与应用
从零开始学习人工智能
算法
探秘算法世界:随机近似算法与时序差分法的原理与应用在算法的广袤宇宙中,每一种算法都像一颗独特的星辰,散发着属于自己的光芒。今天,我们将聚焦于随机近似算法和时序差分法这两颗耀眼的星星,深入探索它们的原理、应用场景,以及背后千丝万缕的联系。一、随机近似算法:在随机海洋中寻找最优解1.1核心概念:与不确定性共舞随机近似算法,从名字就能看出其特点——随机与近似。在实际问题中,我们常常会遇到目标函数包含随机
- GRU门控循环单元回归+SHAP分析,Matlab代码实现,通过SHAP方法量化特征贡献,构建可解释的回归模型,引入SHAP方法打破黑箱限制,提供全局及局部双重解释视角,作者:机器学习之心!
机器学习之心
可解释机器学习GRU门控循环单元回归SHAP分析
GRU门控循环单元回归+SHAP分析,Matlab代码实现,通过SHAP方法量化特征贡献,构建可解释的回归模型,引入SHAP方法打破黑箱限制,提供全局及局部双重解释视角,作者:机器学习之心!目录GRU门控循环单元回归+SHAP分析,Matlab代码实现,通过SHAP方法量化特征贡献,构建可解释的回归模型,引入SHAP方法打破黑箱限制,提供全局及局部双重解释视角,作者:机器学习之心!效果一览基本介绍
- VIVADO导出仿真数据到MATLAB中进行分析
FPGA与信号处理
FPGA学习记录VIVADOSIMULATION导出仿真数据TXTMATLAB
VIVADO导出仿真数据到MATLAB中进行分析目录前言一、导出仿真数据需要编写的RTL代码二、MATLAB读入txt文件中的数据三、需要注意的点总结前言在使用XilinxVivado进行FPGA开发时,如何将RTL仿真生成的数据导出,进行进一步分析与可视化,是很多开发者常遇到的问题。Vivado自带仿真工具不支持直接导出仿真数据,但是我们可以通过编写一段简单的RTL代码即可将需要的仿真数据保存到
- MATLAB 实现数据的插值拟合
鱼弦
人工智能时代matlab人工智能算法
MATLAB实现数据的插值拟合1.介绍插值拟合是一种通过已知数据点构建函数或曲线的方法,用于估计未知数据点的值。插值拟合广泛应用于数据分析、信号处理、图像处理等领域。本教程介绍如何使用MATLAB实现数据的插值拟合,并展示其应用场景和代码实现。2.应用使用场景(1)数据分析场景描述:通过插值拟合填补缺失数据,如时间序列数据中的缺失值。代码实现:%定义数据x=[1,2,3,4,5];y=[2,4,5
- 【智能优化算法】多目标于分解的多目标进化算法MOEA/D算法(Matlab代码实现)
荔枝科研社
单多目标智能算法算法matlab开发语言多目标进化算法MOEA/D算法
目录1概述2数学模型3运行结果4参考文献5Matlab代码及详细文章1概述基于分解的多目标进化算法(multiobjectiveevolu-tionaryalgorithmbasedondecomposition,MOEA/D)是一种利用分解策略解决多目标问题的算法2'。该算法通过聚合函数将多目标问题分解为N个子问题,每个子问题分配一个对应的权重和相关种群点的邻域"3'。种群迭代通过邻域内随机选择
- MATLAB App Designer基础教程 Matlab GUI入门(二)
Sunshine_Cherish
学习笔记Matlabmatlab开发语言程序人生
MATLABGUI入门第二天——Lamp(灯)霓虹灯控件的使用一、主要内容:技巧1.Tooltip的使用2.Vislble和Enable3.lf函数语句的使用需求:根据阈值进行提示1.红色温度过高>=500⒉橙色温度适中400~5003.蓝色温度过低=500app.lamp.Color="1,0,0";app.show_tips.Text="温度过高!";elseifvalue=400app.la
- 在Simulink中进行基于蚁群算法优化滤波器带宽的智能控制系统仿真
amy_mhd
算法前端数据库simulinkmatlab
目录一、背景介绍二、所需工具和环境三、步骤详解步骤1:定义问题与目标示例:定义优化目标步骤2:准备数据集或模拟环境示例:生成测试信号步骤3:设计并实现蚁群算法示例:简单的蚁群算法实现步骤4:创建Simulink模型步骤5:添加滤波器模块示例:添加FIR滤波器步骤6:集成蚁群算法结果示例:MATLABFunctionBlock代码步骤7:设置仿真参数步骤8:运行仿真并分析结果四、总结蚁群算法(Ant
- matlab SAR图像均值滤波
点云侠
matlab与合成孔径雷达matlab均值算法开发语言计算机视觉人工智能算法
目录一、算法原理1、计算过程2、参考文献二、代码实现三、结果展示一、算法原理1、计算过程 SAR图像的均值滤波是将平滑窗口内所有像元的强度值进行平均计算,然后赋给平滑窗口的中心像元,其数学表达式为:Ri,j=1n2∑
- matlab实现大地电磁二维正演
yugi987838
matlab开发语言
大地电磁二维正演程序,在二维平面对介质进行网格剖分,然后利用有限元进行大地电磁二维正演MT2D/2Dmodel.fig,39324MT2D/KK1.m,484MT2D/Ke1.m,254MT2D/Ke2.m,106MT2D/Ke3.m,103MT2D/MT2DMODEL.m,1648MT2D/MT2Dmesh.m,2445MT2D/TEmodel.m,4010MT2D/TMmodel.m,3903
- 基于Matlab的改进人工势场法实现路径规划与避障
bubiyoushang888
matlab
基于Matlab的改进人工势场法实现路径规划与避障circle.m,255compute_angle.m,554compute_Attract.m,305compute_repulsion.m,2606main.m,3021
- 半导体材料仿真:有机半导体材料仿真_(11).有机半导体材料的制备与加工仿真
kkchenkx
信号仿真2信号处理量子计算信息可视化
有机半导体材料的制备与加工仿真1.有机半导体材料的制备仿真1.1分子动力学模拟分子动力学(MolecularDynamics,MD)模拟是一种计算方法,用于研究原子和分子在一定时间内的运动和相互作用。在有机半导体材料的制备过程中,MD模拟可以提供关于分子排列、结构稳定性和相变过程的重要信息。原理分子动力学模拟基于牛顿运动方程,通过计算系统的总势能和动能,预测系统在时间上的演化。总势能通常包括键伸缩
- 从零构建企业知识库问答系统(基于通义灵码+RAG+阿里云OSS的落地实践)
大熊计算机
开发实战阿里云云计算
1企业知识管理在大型企业环境中,知识管理面临三大痛点:信息孤岛(40%的企业知识分散在10+个系统中)、检索低效(员工平均每周浪费3.5小时查找信息)和知识流失(专家离职导致关键经验断层)。传统解决方案如Wiki或文档管理系统存在两大局限:被动检索:用户需精确知道搜索关键词理解缺失:无法解析"季度营收增长率计算方法"等复合问题RAG(检索增强生成)技术的革命性在于将语义检索与大语言模型结合:用户问
- 战争策略优化算法(WSO)(Matlab代码实现)
荔枝科研社
单多目标智能算法算法matlab开发语言战争策略优化算法
欢迎来到本博客❤️❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。目录1概述2主函数3参考文献4Matlab代码实现1概述战争战略优化(WSO)基于战争期间陆军部队的战略调动。战争策略被建模为一个优化过程,其中每个士兵都动态地向最佳值移动。该算法模拟了两种流行的战争策略,即攻击和防御策略。战场上士兵的位置根据实施的策略进行更新。为了提高算法的收敛
- Java常用排序算法/程序员必须掌握的8大排序算法
cugfy
java
分类:
1)插入排序(直接插入排序、希尔排序)
2)交换排序(冒泡排序、快速排序)
3)选择排序(直接选择排序、堆排序)
4)归并排序
5)分配排序(基数排序)
所需辅助空间最多:归并排序
所需辅助空间最少:堆排序
平均速度最快:快速排序
不稳定:快速排序,希尔排序,堆排序。
先来看看8种排序之间的关系:
1.直接插入排序
(1
- 【Spark102】Spark存储模块BlockManager剖析
bit1129
manager
Spark围绕着BlockManager构建了存储模块,包括RDD,Shuffle,Broadcast的存储都使用了BlockManager。而BlockManager在实现上是一个针对每个应用的Master/Executor结构,即Driver上BlockManager充当了Master角色,而各个Slave上(具体到应用范围,就是Executor)的BlockManager充当了Slave角色
- linux 查看端口被占用情况详解
daizj
linux端口占用netstatlsof
经常在启动一个程序会碰到端口被占用,这里讲一下怎么查看端口是否被占用,及哪个程序占用,怎么Kill掉已占用端口的程序
1、lsof -i:port
port为端口号
[root@slave /data/spark-1.4.0-bin-cdh4]# lsof -i:8080
COMMAND PID USER FD TY
- Hosts文件使用
周凡杨
hostslocahost
一切都要从localhost说起,经常在tomcat容器起动后,访问页面时输入http://localhost:8088/index.jsp,大家都知道localhost代表本机地址,如果本机IP是10.10.134.21,那就相当于http://10.10.134.21:8088/index.jsp,有时候也会看到http: 127.0.0.1:
- java excel工具
g21121
Java excel
直接上代码,一看就懂,利用的是jxl:
import java.io.File;
import java.io.IOException;
import jxl.Cell;
import jxl.Sheet;
import jxl.Workbook;
import jxl.read.biff.BiffException;
import jxl.write.Label;
import
- web报表工具finereport常用函数的用法总结(数组函数)
老A不折腾
finereportweb报表函数总结
ADD2ARRAY
ADDARRAY(array,insertArray, start):在数组第start个位置插入insertArray中的所有元素,再返回该数组。
示例:
ADDARRAY([3,4, 1, 5, 7], [23, 43, 22], 3)返回[3, 4, 23, 43, 22, 1, 5, 7].
ADDARRAY([3,4, 1, 5, 7], "测试&q
- 游戏服务器网络带宽负载计算
墙头上一根草
服务器
家庭所安装的4M,8M宽带。其中M是指,Mbits/S
其中要提前说明的是:
8bits = 1Byte
即8位等于1字节。我们硬盘大小50G。意思是50*1024M字节,约为 50000多字节。但是网宽是以“位”为单位的,所以,8Mbits就是1M字节。是容积体积的单位。
8Mbits/s后面的S是秒。8Mbits/s意思是 每秒8M位,即每秒1M字节。
我是在计算我们网络流量时想到的
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
Spring 3 系列
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- 高性能mysql 之 选择存储引擎(一)
annan211
mysqlInnoDBMySQL引擎存储引擎
1 没有特殊情况,应尽可能使用InnoDB存储引擎。 原因:InnoDB 和 MYIsAM 是mysql 最常用、使用最普遍的存储引擎。其中InnoDB是最重要、最广泛的存储引擎。她 被设计用来处理大量的短期事务。短期事务大部分情况下是正常提交的,很少有回滚的情况。InnoDB的性能和自动崩溃 恢复特性使得她在非事务型存储的需求中也非常流行,除非有非常
- UDP网络编程
百合不是茶
UDP编程局域网组播
UDP是基于无连接的,不可靠的传输 与TCP/IP相反
UDP实现私聊,发送方式客户端,接受方式服务器
package netUDP_sc;
import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.net.Ine
- JQuery对象的val()方法执行结果分析
bijian1013
JavaScriptjsjquery
JavaScript中,如果id对应的标签不存在(同理JAVA中,如果对象不存在),则调用它的方法会报错或抛异常。在实际开发中,发现JQuery在id对应的标签不存在时,调其val()方法不会报错,结果是undefined。
- http请求测试实例(采用json-lib解析)
bijian1013
jsonhttp
由于fastjson只支持JDK1.5版本,因些对于JDK1.4的项目,可以采用json-lib来解析JSON数据。如下是http请求的另外一种写法,仅供参考。
package com;
import java.util.HashMap;
import java.util.Map;
import
- 【RPC框架Hessian四】Hessian与Spring集成
bit1129
hessian
在【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中介绍了基于Hessian的RPC服务的实现步骤,在那里使用Hessian提供的API完成基于Hessian的RPC服务开发和客户端调用,本文使用Spring对Hessian的集成来实现Hessian的RPC调用。
定义模型、接口和服务器端代码
|---Model
&nb
- 【Mahout三】基于Mahout CBayes算法的20newsgroup流程分析
bit1129
Mahout
1.Mahout环境搭建
1.下载Mahout
http://mirror.bit.edu.cn/apache/mahout/0.10.0/mahout-distribution-0.10.0.tar.gz
2.解压Mahout
3. 配置环境变量
vim /etc/profile
export HADOOP_HOME=/home
- nginx负载tomcat遇非80时的转发问题
ronin47
nginx负载后端容器是tomcat(其它容器如WAS,JBOSS暂没发现这个问题)非80端口,遇到跳转异常问题。解决的思路是:$host:port
详细如下:
该问题是最先发现的,由于之前对nginx不是特别的熟悉所以该问题是个入门级别的:
? 1 2 3 4 5
- java-17-在一个字符串中找到第一个只出现一次的字符
bylijinnan
java
public class FirstShowOnlyOnceElement {
/**Q17.在一个字符串中找到第一个只出现一次的字符。如输入abaccdeff,则输出b
* 1.int[] count:count[i]表示i对应字符出现的次数
* 2.将26个英文字母映射:a-z <--> 0-25
* 3.假设全部字母都是小写
*/
pu
- mongoDB 复制集
开窍的石头
mongodb
mongo的复制集就像mysql的主从数据库,当你往其中的主复制集(primary)写数据的时候,副复制集(secondary)会自动同步主复制集(Primary)的数据,当主复制集挂掉以后其中的一个副复制集会自动成为主复制集。提供服务器的可用性。和防止当机问题
mo
- [宇宙与天文]宇宙时代的经济学
comsci
经济
宇宙尺度的交通工具一般都体型巨大,造价高昂。。。。。
在宇宙中进行航行,近程采用反作用力类型的发动机,需要消耗少量矿石燃料,中远程航行要采用量子或者聚变反应堆发动机,进行超空间跳跃,要消耗大量高纯度水晶体能源
以目前地球上国家的经济发展水平来讲,
- Git忽略文件
Cwind
git
有很多文件不必使用git管理。例如Eclipse或其他IDE生成的项目文件,编译生成的各种目标或临时文件等。使用git status时,会在Untracked files里面看到这些文件列表,在一次需要添加的文件比较多时(使用git add . / git add -u),会把这些所有的未跟踪文件添加进索引。
==== ==== ==== 一些牢骚
- MySQL连接数据库的必须配置
dashuaifu
mysql连接数据库配置
MySQL连接数据库的必须配置
1.driverClass:com.mysql.jdbc.Driver
2.jdbcUrl:jdbc:mysql://localhost:3306/dbname
3.user:username
4.password:password
其中1是驱动名;2是url,这里的‘dbna
- 一生要养成的60个习惯
dcj3sjt126com
习惯
一生要养成的60个习惯
第1篇 让你更受大家欢迎的习惯
1 守时,不准时赴约,让别人等,会失去很多机会。
如何做到:
①该起床时就起床,
②养成任何事情都提前15分钟的习惯。
③带本可以随时阅读的书,如果早了就拿出来读读。
④有条理,生活没条理最容易耽误时间。
⑤提前计划:将重要和不重要的事情岔开。
⑥今天就准备好明天要穿的衣服。
⑦按时睡觉,这会让按时起床更容易。
2 注重
- [介绍]Yii 是什么
dcj3sjt126com
PHPyii2
Yii 是一个高性能,基于组件的 PHP 框架,用于快速开发现代 Web 应用程序。名字 Yii (读作 易)在中文里有“极致简单与不断演变”两重含义,也可看作 Yes It Is! 的缩写。
Yii 最适合做什么?
Yii 是一个通用的 Web 编程框架,即可以用于开发各种用 PHP 构建的 Web 应用。因为基于组件的框架结构和设计精巧的缓存支持,它特别适合开发大型应
- Linux SSH常用总结
eksliang
linux sshSSHD
转载请出自出处:http://eksliang.iteye.com/blog/2186931 一、连接到远程主机
格式:
ssh name@remoteserver
例如:
ssh
[email protected]
二、连接到远程主机指定的端口
格式:
ssh name@remoteserver -p 22
例如:
ssh i
- 快速上传头像到服务端工具类FaceUtil
gundumw100
android
快速迭代用
import java.io.DataOutputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOExceptio
- jQuery入门之怎么使用
ini
JavaScripthtmljqueryWebcss
jQuery的强大我何问起(个人主页:hovertree.com)就不用多说了,那么怎么使用jQuery呢?
首先,下载jquery。下载地址:http://hovertree.com/hvtart/bjae/b8627323101a4994.htm,一个是压缩版本,一个是未压缩版本,如果在开发测试阶段,可以使用未压缩版本,实际应用一般使用压缩版本(min)。然后就在页面上引用。
- 带filter的hbase查询优化
kane_xie
查询优化hbaseRandomRowFilter
问题描述
hbase scan数据缓慢,server端出现LeaseException。hbase写入缓慢。
问题原因
直接原因是: hbase client端每次和regionserver交互的时候,都会在服务器端生成一个Lease,Lease的有效期由参数hbase.regionserver.lease.period确定。如果hbase scan需
- java设计模式-单例模式
men4661273
java单例枚举反射IOC
单例模式1,饿汉模式
//饿汉式单例类.在类初始化时,已经自行实例化
public class Singleton1 {
//私有的默认构造函数
private Singleton1() {}
//已经自行实例化
private static final Singleton1 singl
- mongodb 查询某一天所有信息的3种方法,根据日期查询
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
// mongodb的查询真让人难以琢磨,就查询单天信息,都需要花费一番功夫才行。
// 第一种方式:
coll.aggregate([
{$project:{sendDate: {$substr: ['$sendTime', 0, 10]}, sendTime: 1, content:1}},
{$match:{sendDate: '2015-
- 二维数组转换成JSON
tangqi609567707
java二维数组json
原文出处:http://blog.csdn.net/springsen/article/details/7833596
public class Demo {
public static void main(String[] args) { String[][] blogL
- erlang supervisor
wudixiaotie
erlang
定义supervisor时,如果是监控celuesimple_one_for_one则删除children的时候就用supervisor:terminate_child (SupModuleName, ChildPid),如果shutdown策略选择的是brutal_kill,那么supervisor会调用exit(ChildPid, kill),这样的话如果Child的behavior是gen_