1.torch在cuda和cpu下相同操作的不同函数
import torch
data = torch.tensor([[1,2,3],[4,5,6]])
data.reshape(2,3)
data = data.cuda()
data.view(2,3)
output:
[1,2],[3,4],[5,6]
torch.from_numpy(ndarray) → Tensor
>>> a = numpy.array([1, 2, 3])
>>> t = torch.from_numpy(a)
>>> t
tensor([ 1, 2, 3])
>>> t[0] = -1
>>> a
array([-1, 2, 3])
torch.numpy()
data = pd.DataFrame([[1,2,3],[4,5,6]])
data.values
numpydata = np.array([[[1,2,3],[4,5,6]]])
pd.DataFrame(numpydata )
4.torch转置
torch.t(input) → Tensor
Expects input to be <= 2-D tensor and transposes dimensions 0 and 1.
>>> x = torch.randn(())
>>> x
tensor(0.1995)
>>> torch.t(x)
tensor(0.1995)
>>> x = torch.randn(3)
>>> x
tensor([ 2.4320, -0.4608, 0.7702])
>>> torch.t(x)
tensor([.2.4320,.-0.4608,..0.7702])
>>> x = torch.randn(2, 3)
>>> x
tensor([[ 0.4875, 0.9158, -0.5872],
[ 0.3938, -0.6929, 0.6932]])
>>> torch.t(x)
tensor([[ 0.4875, 0.3938],
[ 0.9158, -0.6929],
[-0.5872, 0.6932]])
torch.transpose(input, dim0, dim1) → Tensor
Returns a tensor that is a transposed version of input. The given dimensions dim0 and dim1 are swapped.
>>> x = torch.randn(2, 3)
>>> x
tensor([[ 1.0028, -0.9893, 0.5809],
[-0.1669, 0.7299, 0.4942]])
>>> torch.transpose(x, 0, 1)
tensor([[ 1.0028, -0.1669],
[-0.9893, 0.7299],
[ 0.5809, 0.4942]])