matlab 矩阵除法求方程组的解,线性方程组求解矩阵除法.PPT

线性方程组求解矩阵除法

第二章 MATLAB编程与作图 MATLAB数学实验 第三章 矩阵代数 第三章 矩阵代数 3.1 预备知识:线性代数 3.2 矩阵代数的MATLAB指令 3.3 计算实验:线性方程组求解 3.4 建模实验:投入产出分析和基因遗传 3.1 预备知识:线性代数 线性方程组 记为 A x = b 3.1 预备知识:线性代数 线性方程组 若秩(A) ? 秩(A,b),则无解; 若秩(A) = 秩(A,b) = n, 存在唯一解; 若秩(A) = 秩(A,b) < n, 存在无穷多解; 通解是齐次线性方程组 Ax=0 的基础解系与 Ax=b 的一个特解之和。 3.1 预备知识:线性代数 逆矩阵 方阵A称为可逆的,如果存在方阵B,使A B = B A = E,记 B = A-1 方阵A可逆的充分必要条件:?A??0 A-1 =A*/|A| 这里A*为A的伴随矩阵 (A E) 行变换 3.1 预备知识:线性代数 特征值与特征向量 对于方阵A,若存在数?和非零向量x 使 A x = ? x,则称?为A的一个特征值,x 为A 的一个对应于特征值?的特征向量。 特征值计算归结为特征多项式的求根。 特征向量计算:齐次线性方程组 (A - ?E) x = 0 的所有一组线性无关解。 3.2 矩阵代数的MATLAB指令 运算符 A’ (共轭)转置, A.’ 转置 A+B与A-B 加与减 k+A与k-A 数与矩阵加减 k*A或A*k 数乘矩阵 A*B 矩阵乘法 A^k 矩阵乘方 左除A\B 为AX=B的解 右除B/A 为XA=B的解 3.2 矩阵代数的MATLAB指令 矩阵运算与数组运算的区别 数组运算按元素定义,矩阵运算按线性代数定义 矩阵的加、减、数乘等运算与数组运算是一致的 矩阵的乘法、乘方和除法与数组乘法、乘方和除法不同 数与矩阵加减、矩阵除法在数学上是没有意义的。但在MATLAB中有定义。 例子 P45-46 3.2 矩阵代数的MATLAB指令 特殊矩阵生成 zeros(m,n) m行n列的零矩阵; ones(m,n) m行n列的元素全为1的阵; eye(n) n阶单位矩阵; rand(m,n) m行n列[0,1]上均匀分布随机数矩阵 3.2 矩阵代数的MATLAB指令 矩阵处理 trace(A) 迹(对角线元素的和) diag(A) A对角线元素构成的向量; diag(x) 向量x的元素构成的对角矩阵. tril(A) A的下三角部分 triu(A) A的上三角部分 flipud(A) 矩阵上下翻转 fliplr(A) 矩阵左右翻转 reshape(A, m, n) 矩阵A的元素重排成m行n列矩阵 3.2 矩阵代数的MATLAB指令 矩阵分析 rank(A) 秩 det(A) 行列式; inv(A) 逆矩阵; null(A) Ax=0的基础解系; orth(A) A列向量正交规范化 norm(x) 向量x的范数 norm(A) 矩阵A的范数 3.2 矩阵代数的MATLAB指令 特征值与标准形 eig(A) 方阵A的特征值 [V, D]=eig(A)返回方阵A的特征值和特征向量。其中D为的特征值构成的对角阵,每个特征值对应的V的列为属于该特征值的一个特征向量。 [V, J]=jordan(A) 返回A的相似变换矩阵和约当标准形 例子 P49-50 3.3 计算实验:线性方程组求解 矩阵除法 (1) 当A为方阵,A\B结果与inv(A)*B一致; (2) 当A不是方阵, AX=B存在唯一解, A\B将给出这个解; (3) 当A不是方阵, AX=B为不定方程组(即无穷多解),A\B将给出一个具有最多零元素的特解; (4) 当A不是方阵, AX=B若为超定方程组(即无解), A\B给出最小二乘意义上的近似解,即使得向量AX-B的模达到最小。 3.3 计算实验:线性方程组求解 例3.1 解方程组 3.3 计算实验:线性方程组求解 例3.2 线性方程组通解 用rref化为行最简形以后求解 用除法求出一个特解,再用null求得一个齐次组的基础解系 用符号数学工具箱中的solve求解(第七章) 3.3 计算实验:线性方程组求解 相似对角化及应用 如果n阶方阵A有n个线性无关的特征向量,则必存在正交矩阵P, 使得 P-1AP= ?, 其中?是A的特征值构成的对角矩阵,P的列向量是对应的n个正交特征向量。 使用MATLAB函数eig求得的每个特征向量都是单位向量(即模等于1),并且属于同一特征值的线性无关特征向量已正交化,所以由此容易进行相似对角化。 3.3 计算实验:线性方程组求解

你可能感兴趣的:(matlab,矩阵除法求方程组的解)