- Shader面试题100道之(81-100)
还是大剑师兰特
#Shader综合教程100+大剑师shader面试题shader教程
Shader面试题(第81-100题)以下是第81到第100道Shader相关的面试题及答案:81.Unity中如何实现屏幕空间的热扭曲效果(HeatDistortion)?热扭曲效果可以通过GrabPass抓取当前屏幕图像,然后在片段着色器中使用噪声或动态UV偏移模拟空气扰动,再结合一个透明通道控制扭曲强度来实现。82.Shader中如何实现物体轮廓高亮(OutlineHighlight)?轮廓
- 被动降噪的概念及编程实现
CodeByte
人工智能算法javascript编程
被动降噪是指通过编程技术和算法,对输入的数据进行处理,以减少或消除其中的噪声。噪声可以是各种形式的干扰,例如来自传感器、通信信号或其他外部源的干扰。在本文中,我们将探讨被动降噪的意义以及如何使用编程来实现这一目标。被动降噪的意义:噪声对数据的准确性和可靠性产生负面影响。在许多应用领域,例如图像处理、音频处理和信号处理中,噪声的存在可能导致数据质量下降,使得后续的分析和处理变得困难。因此,被动降噪技
- 音频被动降噪技术
悟空胆好小
音频相关音视频
音频被动降噪技术音频被动降噪技术是一种通过物理结构和材料设计来减少或隔离外部噪声的降噪方式,其核心原理是通过物理屏障或吸声材料来阻断或吸收声波,从而降低环境噪声对听觉体验的影响。以下将从技术原理、应用场景、优缺点及与其他降噪技术的对比等方面进行详细分析。一、被动降噪技术的原理被动降噪技术(PassiveNoiseCancellation,PNC)主要依赖于耳机的物理结构和材料设计,通过以下几种方式
- matlab卷积矩阵绝对值,MATLAB矩阵分析和计算
weixin_39928736
matlab卷积矩阵绝对值
MATLAB矩阵分析和计算编辑锁定讨论上传视频本词条缺少概述图,补充相关内容使词条更完整,还能快速升级,赶紧来编辑吧!《MATLAB矩阵分析和计算》是清华大学出版社出版的一本图书。[1]书名MATLAB矩阵分析和计算作者杜树春出版社清华大学出版社出版时间2019年6月1日定价59元ISBN9787302524816印次1-1印刷日期2019.04.23MATLAB矩阵分析和计算图书内容编辑本书侧重
- 盲超分的核心概念
小冷爱读书
数学建模盲超分超分重建
一、盲超分的本质与数学建模1.退化过程的数学表达低分辨率图像(LR)可看作高分辨率图像(HR)经过退化模型后的结果::观测到的低分辨率图像:待恢复的高分辨率图像:模糊核(BlurKernel)⊗:卷积操作↓:下采样(步长为):加性噪声(如高斯噪声、泊松噪声等)盲超分的核心问题:在未知、、的情况下,从估计。2.为什么传统超分方法会失效?传统方法(如SRCNN、EDSR)假设退化是固定的(如双三次下采
- 基于STM32金属探测器设计
摘要随着便携式金属探测器在安防,考古及工业检测等领域需求的增加,现有探测器的体积大,能耗高,操作复杂的缺点亟需解决。本文针对便携式金属探测器的设计进行探索,在硬件上使用了STM32F103C8T6单片机模块,WL02涡流传感器模块,ADS1115模数转换模块,蜂鸣器模块等设计出本系统的电路,在软件上设计出主程序,信号采集及报警子程序等,对系统进行基础功能,灵敏度,抗干扰和耐久性测试,测试结果表明探
- [论文阅读]Distilling Step-by-Step! Outperforming Larger Language Models with Less Training Data and Smal
0x211
论文阅读语言模型人工智能自然语言处理
中文译名:逐步蒸馏!以较少的训练数据和较小的模型规模超越较大的语言模型发布链接:http://arxiv.org/abs/2305.02301AcceptedtoFindingsofACL2023阅读原因:近期任务需要用到蒸馏操作,了解相关知识核心思想:改变视角。原来的视角:把LLMs视为噪声标签的来源。现在的视角:把LLMs视为能够推理的代理。方法好在哪?需要的数据量少,得到的结果好。文章的方法
- 深入解析:UPF/PGW-U如何通过PPP/L2TP隧道实现终端PAP/CHAP接入
码农老gou
5G5G网络
在移动网络承载企业VPN或ISP接入的幕后,UPF/PGW-U化身智能PPP客户端,在L2TP隧道中完成鉴权与IP分配,为终端构筑透明传输通道。传统移动网络中,终端通常通过IPPDP类型直接获取IP地址访问互联网或IMS。但在特定场景(如企业VPN接入、某些ISP的宽带接入)中,需要终端采用PAP/CHAP鉴权并通过L2TP隧道连接到企业内网或ISP后台系统。本文将详细解析在4G/5G网络中,UP
- Matlab裁剪降水数据:1km掩膜制作实战
咋(za)说
matlab降水数据处理裁剪掩膜制作降水数据裁剪China_Pre
1km降水数据处理-制作数据裁剪掩膜1.数据概述2掩膜文件制作示例2.1数据准备2.2matlab掩膜制作示例代码3结语 中国1km分辨率逐月降水量数据集(1901-2024)是高精度、长时间序列的气候数据产品,广泛应用于水文、生态、农业等领域的研究。本篇基于应用需要,以该数据集为输入,结合研究区shp边界文件,制作用于数据提取/裁剪的掩膜文件。下面为具体内容。1.数据概述 中国1km分辨率逐
- (一)OpenCV——噪声去除(降噪)
高斯滤波器(针对高斯噪声)高斯噪声是指它的概率密度函数服从高斯分布(即正态分布)的一类噪声。常见的高斯噪声包括起伏噪声、宇宙噪声、热噪声和散粒噪声等等。高斯滤波(Gaussianfilter)包含许多种,包括低通、带通和高通等,我们通常图像上说的高斯滤波,指的是高斯模糊(GaussianBlur),是一种高斯低通滤波,其过滤调图像高频成分(图像细节部分),保留图像低频成分(图像平滑区域),所以对图
- MATLAB实现快速非局部均值图像去噪方法
一只爪子
本文还有配套的精品资源,点击获取简介:非局部均值滤波是一种先进的图像去噪技术,与传统方法相比,它利用图像的全局信息来去除噪声,同时保持图像细节。该算法通过搜索和利用整个图像中相似的像素块,对每个像素点进行去噪处理。本文提供的MATLAB代码FAST_NLM_II.m实现此算法,并包含必要的参数设置、相似性计算、加权平均和图像更新步骤。了解并应用此代码是学习和进一步改进非局部均值滤波技术的基础。1.
- Jmeter跨线程组传递参数(token)
1.跨线程组的意义Jmeter中线程组是互不干扰的状态,为了方便管理,可以将单独的接口放到不同的线程组中。如:在登录接口下,添加Beanshell后置处理器使用函数${__setProperty(key,value,true)}将提取出来的token设置为全局变量,再使用${__P(key)}将${__setProperty(key,value,true)}的值拿出来再赋值,后续在其他线程组里面需
- CN3791 锂电池充电芯片详解及电路设计要点-国产芯片
《CN3791锂电池充电芯片详解及电路设计要点》一、元器件功能分析与引脚作用详解(一)CN3791芯片引脚功能表引脚序号名称功能描述连接要求/注意事项1VG内部电压调制器输出,为驱动电路供电(内部驱动P沟道MOSFET的栅极)需与VCC之间接100nF瓷片电容(C2),滤除高频噪声,稳定驱动电源2GND系统地,输入电源负极和电池负极连接端需与功率地、信号地单点共地,避免开关噪声干扰控制回路3CHR
- matlab画信号图方法,献给初学者:手把手教你绘制信号通路图
信号通路是指能将细胞外的分子信号经细胞膜传入细胞内发挥效应的一系列酶促反应通路。细胞信号通路图是科研研究过程中最常见也是最常用到的,如何绘制适合我们自己科研课题的信号通路图呢?可以试试pathwaybuildertool软件。这款软件简单易学,即便是零基础的同学,也可以做出漂亮的信号通路。1.首先,打开PathwayBuilderTool2.0软件,软件自带分子生物学会用到的基本元素,如不同的细胞
- PCL改进的体素滤波器
代码探险狂人
PCL
体素滤波是一种常用的点云数据处理方法,可以用于去除噪声、平滑点云数据以及进行体素化等操作。PCL(点云库)是一个广泛使用的开源库,提供了丰富的点云处理算法和工具。在本文中,我们将介绍如何改进PCL的体素滤波器,并提供相应的源代码。体素滤波器是一种基于体素网格的滤波方法,它将点云数据划分为规则的体素网格,并对每个体素内的点进行处理。传统的体素滤波器在去除噪声和平滑数据方面表现良好,但在一些特定场景下
- chatgpt赋能python:Python音频降噪处理:使用Python减少噪音并提升声音质量
Python音频降噪处理:使用Python减少噪音并提升声音质量在日常生活中,使用音频通信是非常普遍的。但是,由于各种原因,我们可能会遇到许多噪音干扰,从而降低语音质量并影响通信的效果。为了解决这个问题,我们可以使用Python来降噪音。什么是音频降噪处理?我们每天听到的声音都是由许多不同频率的声音波形组成的。噪音是指在声音中添加了其他频率的声音波形。这些声音可以是来自电器的嗡嗡声、风扇或其他背景
- chatgpt赋能python:Python降噪技术突出人声,在语音处理中的应用
atest166
ChatGptchatgptpython语音识别计算机
Python降噪技术突出人声,在语音处理中的应用在现代社会中,语音处理已经成为了一个普遍的技术,由于环境干扰和录音设备的限制,录音中往往会有许多杂音和噪音,影响语音质量和信号分析。在此背景下,降噪技术逐渐成为了一项重要的技术手段。Python作为一门功能强大的编程语言,可以被广泛地应用于语音处理,尤其是在降噪方面。在本篇文章中,我们会详细探讨Python降噪技术突出人声的应用。什么是语音降噪?语音
- 石子入水波纹效果:UV扰动着色器实现
walterCui
Unity3d游戏uv着色器
利用UV坐标扰动来模拟水面是一种常见且有效的技术手段,上述效果主要通过对水面纹理的UV坐标进行动态偏移或扰动,从而模拟水波的流动和波纹效果。资源下载具体实现和原理如下:基本思路:通过对水面纹理的UV坐标加上时间相关的扰动函数(如正弦波、余弦波、噪声函数等),使纹理坐标随时间变化,产生动态波动的视觉效果。这种方法不改变顶点位置,而是通过纹理的动态变化模拟水面波动实现方式:计算屏幕或模型表面的基础UV
- 【论文复现】Taylor算法用于TOA(到达时间)的三维标签位置解算,360个标签、12个基站的环境作为验证,附MATLAB例程
MATLAB卡尔曼
论文复现算法matlab开发语言
本文给出论文《基于Taylor-Chan算法的改进UWB室内三维定位方法》中的Taylor算法来解算TOA的复现程序(MATLAB)。使用论文中给定的12个锚点/360个测试的标签用来测试算法性能文章目录运行结果程序介绍核心功能概述结果输出应用场景MATLAB源代码运行结果误差输出:程序介绍本程序基于Taylor迭代算法,实现了对三维空间内360个目标点的TOA(TimeofArrival)定位解
- GitHub信息收集
KPX
web安全web安全信息收集网络安全
目录简介一、入门搜索技巧1.基本关键词搜索2.文件类型限定搜索3.用户/组织定向搜索二、精准定位技巧1.组合搜索条件2.排除干扰结果3.路径限定搜索三、防御建议四、法律与道德提醒简介GitHub作为全球最大的代码托管平台,存储着数十亿行公开代码,其中可能包含大量意外泄露的敏感信息。本文将系统介绍从基础到进阶的GitHub信息收集技术,所有搜索语法均经过验证,确保能够返回实际结果。一、入门搜索技巧1
- 街道垃圾识别难?陌讯视觉算法实测准确率突破95%
2501_92487900
算法边缘计算目标检测视觉检测计算机视觉
开篇痛点:街道垃圾识别的技术挑战在智慧城市和环保监管场景中,街道垃圾的实时检测一直是个难题。传统视觉算法(如YOLOv5、FasterR-CNN)在复杂街道场景下表现不佳,主要面临以下问题:光照干扰:早晚光线变化导致误检(如阴影被识别为垃圾)小目标漏检:饮料瓶、烟头等小物体在640x640输入下仅占10x10像素遮挡问题:垃圾桶周边堆积物造成特征混淆某环保科技公司实测数据显示,开源模型在真实场景中
- matlab计算转子系统的固有频率、振型、不平衡响应
可以计算转子系统的固有频率、振型、不平衡响应MatrixRiccati/code/Dichotomy_1(2).m,2210MatrixRiccati/code/Dichotomy_1.m,2210MatrixRiccati/code/RiccatiSY_1.m,2756MatrixRiccati/code/Trans1x(2).m,451MatrixRiccati/code/Trans1x.m,
- MEMS寻北仪在非开挖工程中如何应用?
ericco123
科技制造MEMS陀螺仪惯性技术
在非开挖地下工程作业中,轨迹控制精度会直接影响施工效率。传统磁定向工具在金属管道、城市地下强磁干扰环境中易失效;光纤陀螺体积大且抗振抗冲击性能较差。而ER-MNS-09作为一款通用版MEMS寻北仪凭借其抗磁干扰、微型化和稳定可靠等优势,可显著提升复杂工况下的导向精度。那么,ER-MNS-09的优势在非开挖工程作业时如何体现?强磁干扰环境传统磁定向工具在城市地下及工业区等强磁环境中作业时,受地磁场影
- 基于MATLAB的语音信号预处理
3.1.语音信号的预加重处理对语音的的高频部分进行加重以去除口唇部分的影响,就必须要对输入的数字语音信号进行预加重处理,以此来增加语音的高频分辨率。通常通过传递函数为的一阶FIR高通数字滤波器来实现预加重,其中为预加重系数,0.9<<1.0。设n时刻的语音采样值为X(n),经过预加重处理的结果为,这里取=0.98。图3.1为该高通滤波器的幅频特性及相频特性。图3.2中分别给出了预加重前和预加重后的
- Python contextvars:跨异步任务的上下文管理利器
1.为何需要contextvars?问题的根源在构建复杂的应用程序,尤其是Web服务和并发系统时,我们经常面临一个共同的挑战:如何将某些“隐式”的上下文信息(如请求ID、用户信息、数据库事务对象)在程序的调用链中传递下去,以便在任意深度的函数中都能方便地访问?传统的解决方案各有弊端:全局变量:在并发环境下会产生竞态条件,不同请求的数据会互相干扰。threading.local:它只能做到线程级别的
- 带印章的财务报表有什么工具可以解析?
TextIn智能文档云平台
文档解析人工智能textin
TextIn的文档解析工具可以解决财务报表的精准解析。不止印章,TextIn文档解析可以将文档中的复杂表格、手写笔记、图片印章等进行梳理,转换成大模型友好的内容格式(Markdown)。日常财务报表中常见手写签名、批注及各类印章覆盖,对传统OCR识别构成巨大挑战。TextIn文档解析具备强大的图像处理与文字识别能力,能有效分离背景印章干扰,清晰辨识覆盖文字,并对潦草、连笔的手写体保持较高的识别准确
- 「日拱一码」020 机器学习——数据处理
胖达不服输
「日拱一码」机器学习人工智能数据处理python
目录数据清洗缺失值处理删除缺失值:填充缺失值:重复值处理检测重复值处理重复值异常值处理Z-score方法IQR方法(四分位距)数据一致性检查数据转换规范化(归一化)Min-Max归一化MaxAbsScaler标准化离散化等宽离散化等频离散化数据清洗数据清洗是数据处理的第一步,目的是去除噪声数据、处理缺失值和异常值,使数据更加干净、可用缺失值处理删除缺失值:如果数据集中缺失值较少,可以直接删除包含缺
- ACS758LCB-050B Allegro隔离电流传感器2.4kV+120kHz高精度能源监控专家!
深圳市尚想信息技术有限公司
霍尔效应电流传感器工业控制新能源汽车电子
ACS758LCB-050B-PFF-T(Allegro)产品解析与推广文案一、产品定位ACS758LCB-050B-PFF-T是AllegroMicroSystems推出的基于霍尔效应的隔离式电流传感器,采用CB-5封装,可精准测量±50A直流/交流电流,具有低噪声、高线性度特性,适用于工业控制、新能源及汽车电子等高可靠性场景。二、核心功能与参数特性参数/性能电流量程±50A(双向测量)输出电压
- 【论文阅读】Meta-SE: A Meta-Learning Framework for Few-Shot Speech Enhancement
Bosenya12
论文阅读
这篇文章介绍了一个名为Meta-SE的元学习框架,专门用于少样本(few-shot)语音增强问题。文章的核心目标是解决在实际应用中,由于训练样本有限而导致传统深度神经网络(DNN)模型性能受限的问题。Meta-SE通过元学习的方法,利用先验的元知识快速适应新的任务和噪声类型,即使只有少量训练样本也能表现出色。背景知识与研究动机语音增强技术旨在从带噪语音信号中恢复目标语音,提升语音质量和可懂度。深度
- 【大数据】FP-growth算法
大雨淅淅
大数据算法人工智能大数据
目录一、FP-growth算法概述二、FP-growth算法代码实现2.1FP-growth算法matlab实现2.2FP-growth算法python实现三、FP-growth算法应用四、FP-growth算法发展趋势一、FP-growth算法概述FP-growth算法是一种用于发现数据集中频繁项集的高效算法。它由JiaweiHan等人提出,旨在解决Apriori算法在大数据集上效率低下的问题。
- ASM系列四 利用Method 组件动态注入方法逻辑
lijingyao8206
字节码技术jvmAOP动态代理ASM
这篇继续结合例子来深入了解下Method组件动态变更方法字节码的实现。通过前面一篇,知道ClassVisitor 的visitMethod()方法可以返回一个MethodVisitor的实例。那么我们也基本可以知道,同ClassVisitor改变类成员一样,MethodVIsistor如果需要改变方法成员,注入逻辑,也可以
- java编程思想 --内部类
百合不是茶
java内部类匿名内部类
内部类;了解外部类 并能与之通信 内部类写出来的代码更加整洁与优雅
1,内部类的创建 内部类是创建在类中的
package com.wj.InsideClass;
/*
* 内部类的创建
*/
public class CreateInsideClass {
public CreateInsideClass(
- web.xml报错
crabdave
web.xml
web.xml报错
The content of element type "web-app" must match "(icon?,display-
name?,description?,distributable?,context-param*,filter*,filter-mapping*,listener*,servlet*,s
- 泛型类的自定义
麦田的设计者
javaandroid泛型
为什么要定义泛型类,当类中要操作的引用数据类型不确定的时候。
采用泛型类,完成扩展。
例如有一个学生类
Student{
Student(){
System.out.println("I'm a student.....");
}
}
有一个老师类
- CSS清除浮动的4中方法
IT独行者
JavaScriptUIcss
清除浮动这个问题,做前端的应该再熟悉不过了,咱是个新人,所以还是记个笔记,做个积累,努力学习向大神靠近。CSS清除浮动的方法网上一搜,大概有N多种,用过几种,说下个人感受。
1、结尾处加空div标签 clear:both 1 2 3 4
.div
1
{
background
:
#000080
;
border
:
1px
s
- Cygwin使用windows的jdk 配置方法
_wy_
jdkwindowscygwin
1.[vim /etc/profile]
JAVA_HOME="/cgydrive/d/Java/jdk1.6.0_43" (windows下jdk路径为D:\Java\jdk1.6.0_43)
PATH="$JAVA_HOME/bin:${PATH}"
CLAS
- linux下安装maven
无量
mavenlinux安装
Linux下安装maven(转) 1.首先到Maven官网
下载安装文件,目前最新版本为3.0.3,下载文件为
apache-maven-3.0.3-bin.tar.gz,下载可以使用wget命令;
2.进入下载文件夹,找到下载的文件,运行如下命令解压
tar -xvf apache-maven-2.2.1-bin.tar.gz
解压后的文件夹
- tomcat的https 配置,syslog-ng配置
aichenglong
tomcathttp跳转到httpssyslong-ng配置syslog配置
1) tomcat配置https,以及http自动跳转到https的配置
1)TOMCAT_HOME目录下生成密钥(keytool是jdk中的命令)
keytool -genkey -alias tomcat -keyalg RSA -keypass changeit -storepass changeit
- 关于领号活动总结
alafqq
活动
关于某彩票活动的总结
具体需求,每个用户进活动页面,领取一个号码,1000中的一个;
活动要求
1,随机性,一定要有随机性;
2,最少中奖概率,如果注数为3200注,则最多中4注
3,效率问题,(不能每个人来都产生一个随机数,这样效率不高);
4,支持断电(仍然从下一个开始),重启服务;(存数据库有点大材小用,因此不能存放在数据库)
解决方案
1,事先产生随机数1000个,并打
- java数据结构 冒泡排序的遍历与排序
百合不是茶
java
java的冒泡排序是一种简单的排序规则
冒泡排序的原理:
比较两个相邻的数,首先将最大的排在第一个,第二次比较第二个 ,此后一样;
针对所有的元素重复以上的步骤,除了最后一个
例题;将int array[]
- JS检查输入框输入的是否是数字的一种校验方法
bijian1013
js
如下是JS检查输入框输入的是否是数字的一种校验方法:
<form method=post target="_blank">
数字:<input type="text" name=num onkeypress="checkNum(this.form)"><br>
</form>
- Test注解的两个属性:expected和timeout
bijian1013
javaJUnitexpectedtimeout
JUnit4:Test文档中的解释:
The Test annotation supports two optional parameters.
The first, expected, declares that a test method should throw an exception.
If it doesn't throw an exception or if it
- [Gson二]继承关系的POJO的反序列化
bit1129
POJO
父类
package inheritance.test2;
import java.util.Map;
public class Model {
private String field1;
private String field2;
private Map<String, String> infoMap
- 【Spark八十四】Spark零碎知识点记录
bit1129
spark
1. ShuffleMapTask的shuffle数据在什么地方记录到MapOutputTracker中的
ShuffleMapTask的runTask方法负责写数据到shuffle map文件中。当任务执行完成成功,DAGScheduler会收到通知,在DAGScheduler的handleTaskCompletion方法中完成记录到MapOutputTracker中
- WAS各种脚本作用大全
ronin47
WAS 脚本
http://www.ibm.com/developerworks/cn/websphere/library/samples/SampleScripts.html
无意中,在WAS官网上发现的各种脚本作用,感觉很有作用,先与各位分享一下
获取下载
这些示例 jacl 和 Jython 脚本可用于在 WebSphere Application Server 的不同版本中自
- java-12.求 1+2+3+..n不能使用乘除法、 for 、 while 、 if 、 else 、 switch 、 case 等关键字以及条件判断语句
bylijinnan
switch
借鉴网上的思路,用java实现:
public class NoIfWhile {
/**
* @param args
*
* find x=1+2+3+....n
*/
public static void main(String[] args) {
int n=10;
int re=find(n);
System.o
- Netty源码学习-ObjectEncoder和ObjectDecoder
bylijinnan
javanetty
Netty中传递对象的思路很直观:
Netty中数据的传递是基于ChannelBuffer(也就是byte[]);
那把对象序列化为字节流,就可以在Netty中传递对象了
相应的从ChannelBuffer恢复对象,就是反序列化的过程
Netty已经封装好ObjectEncoder和ObjectDecoder
先看ObjectEncoder
ObjectEncoder是往外发送
- spring 定时任务中cronExpression表达式含义
chicony
cronExpression
一个cron表达式有6个必选的元素和一个可选的元素,各个元素之间是以空格分隔的,从左至右,这些元素的含义如下表所示:
代表含义 是否必须 允许的取值范围 &nb
- Nutz配置Jndi
ctrain
JNDI
1、使用JNDI获取指定资源:
var ioc = {
dao : {
type :"org.nutz.dao.impl.NutDao",
args : [ {jndi :"jdbc/dataSource"} ]
}
}
以上方法,仅需要在容器中配置好数据源,注入到NutDao即可.
- 解决 /bin/sh^M: bad interpreter: No such file or directory
daizj
shell
在Linux中执行.sh脚本,异常/bin/sh^M: bad interpreter: No such file or directory。
分析:这是不同系统编码格式引起的:在windows系统中编辑的.sh文件可能有不可见字符,所以在Linux系统下执行会报以上异常信息。
解决:
1)在windows下转换:
利用一些编辑器如UltraEdit或EditPlus等工具
- [转]for 循环为何可恨?
dcj3sjt126com
程序员读书
Java的闭包(Closure)特征最近成为了一个热门话题。 一些精英正在起草一份议案,要在Java将来的版本中加入闭包特征。 然而,提议中的闭包语法以及语言上的这种扩充受到了众多Java程序员的猛烈抨击。
不久前,出版过数十本编程书籍的大作家Elliotte Rusty Harold发表了对Java中闭包的价值的质疑。 尤其是他问道“for 循环为何可恨?”[http://ju
- Android实用小技巧
dcj3sjt126com
android
1、去掉所有Activity界面的标题栏
修改AndroidManifest.xml 在application 标签中添加android:theme="@android:style/Theme.NoTitleBar"
2、去掉所有Activity界面的TitleBar 和StatusBar
修改AndroidManifes
- Oracle 复习笔记之序列
eksliang
Oracle 序列sequenceOracle sequence
转载请出自出处:http://eksliang.iteye.com/blog/2098859
1.序列的作用
序列是用于生成唯一、连续序号的对象
一般用序列来充当数据库表的主键值
2.创建序列语法如下:
create sequence s_emp
start with 1 --开始值
increment by 1 --増长值
maxval
- 有“品”的程序员
gongmeitao
工作
完美程序员的10种品质
完美程序员的每种品质都有一个范围,这个范围取决于具体的问题和背景。没有能解决所有问题的
完美程序员(至少在我们这个星球上),并且对于特定问题,完美程序员应该具有以下品质:
1. 才智非凡- 能够理解问题、能够用清晰可读的代码翻译并表达想法、善于分析并且逻辑思维能力强
(范围:用简单方式解决复杂问题)
- 使用KeleyiSQLHelper类进行分页查询
hvt
sql.netC#asp.nethovertree
本文适用于sql server单主键表或者视图进行分页查询,支持多字段排序。KeleyiSQLHelper类的最新代码请到http://hovertree.codeplex.com/SourceControl/latest下载整个解决方案源代码查看。或者直接在线查看类的代码:http://hovertree.codeplex.com/SourceControl/latest#HoverTree.D
- SVG 教程 (三)圆形,椭圆,直线
天梯梦
svg
SVG <circle> SVG 圆形 - <circle>
<circle> 标签可用来创建一个圆:
下面是SVG代码:
<svg xmlns="http://www.w3.org/2000/svg" version="1.1">
<circle cx="100" c
- 链表栈
luyulong
java数据结构
public class Node {
private Object object;
private Node next;
public Node() {
this.next = null;
this.object = null;
}
public Object getObject() {
return object;
}
public
- 基础数据结构和算法十:2-3 search tree
sunwinner
Algorithm2-3 search tree
Binary search tree works well for a wide variety of applications, but they have poor worst-case performance. Now we introduce a type of binary search tree where costs are guaranteed to be loga
- spring配置定时任务
stunizhengjia
springtimer
最近因工作的需要,用到了spring的定时任务的功能,觉得spring还是很智能化的,只需要配置一下配置文件就可以了,在此记录一下,以便以后用到:
//------------------------定时任务调用的方法------------------------------
/**
* 存储过程定时器
*/
publi
- ITeye 8月技术图书有奖试读获奖名单公布
ITeye管理员
活动
ITeye携手博文视点举办的8月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。
8月试读活动回顾:
http://webmaster.iteye.com/blog/2102830
本次技术图书试读活动的优秀奖获奖名单及相应作品如下(优秀文章有很多,但名额有限,没获奖并不代表不优秀):
《跨终端Web》
gleams:http