代码结果:
寻找导入的xml文件
import cv2
print(cv2.__file__)
找到cv2安装的路径,在该路径下找到/data文件。
里面默认下载了一部分xml文件,不是全部的xml文件。如果需要的xml文件不在里面,需要自行在网上下载,然后放到该目录下,以备调用。比如自行安装('haarcascade_mcs_nose.xml','haarcascade_mcs_mouth.xml')
导入包:
import cv2
导入xml文件,可以根据任务需要,自行选择需要导入的xml文件
#人脸检测器
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
#眼睛检测器
eye_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_eye.xml')
#嘴巴检测器
mouth_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_mcs_mouth.xml')
#鼻子检测器
nose_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_mcs_nose.xml')
设置窗口:
cv2.namedWindow('mytest', 0);
cv2.resizeWindow('mytest', 1500, 1000)
打开摄像头,人脸识别:
#获取摄像头
cap = cv2.VideoCapture(0,cv2.CAP_DSHOW)
#打开摄像头
cap.open(0)
while cap.isOpened():
#获取画面
flag, frame = cap.read()
#人脸检测
faces = face_cascade.detectMultiScale(frame, 1.3, 2)
img = frame
for (x, y, w, h) in faces:
#根据人脸坐标和长度,宽度画出矩形
img = cv2.rectangle(img, (x, y), (x+w, y+h),(255, 0 ,0), 2)
#确定人脸范围,在人脸上搜索其他特征
face_area = img[y:y+h, x:x+w]
#人眼检测
eyes = eye_cascade.detectMultiScale(face_area, 1.3, 2)
for (ex, ey, ew, eh) in eyes:
cv2.rectangle(face_area, (ex, ey), (ex + ew, ey + eh), (255, 0 ,0), 1)
#嘴巴检测
mouth = mouth_cascade.detectMultiScale(face_area, 1.5, 2)
for (mx, my, mw, mh) in mouth:
cv2.rectangle(face_area, (mx, my), (mx + mw, my + mh), (0, 0, 255), 2)
# 鼻子检测
nose = nose_cascade.detectMultiScale(face_area, 1.2, 5)
for (nx, ny, nw, nh) in nose:
cv2.rectangle(face_area, (nx, ny), (nx + nw, ny + nh), (255, 0, 255), 2)
#画面显示
cv2.imshow('mytest', img)
#设置退出按钮
key_pressed = cv2.waitKey(100)
print('单机窗口,输入按键,电脑按键为',key_pressed,'按esc键结束')
if key_pressed == 27:
break
#关闭摄像头
cap.release()
#关闭图像窗口
cv2.destroyAllWindows()
完整代码:
import cv2
#人脸检测器
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
#眼睛检测器
eye_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_eye.xml')
#嘴巴检测器
mouth_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_mcs_mouth.xml')
#鼻子检测器
nose_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_mcs_nose.xml')
#获取摄像头
cap = cv2.VideoCapture(0,cv2.CAP_DSHOW)
#打开摄像头
cap.open(0)
cv2.namedWindow('mytest', 0);
cv2.resizeWindow('mytest', 1500, 1000)
while cap.isOpened():
#获取画面
flag, frame = cap.read()
#人脸检测
faces = face_cascade.detectMultiScale(frame, 1.3, 2)
img = frame
for (x, y, w, h) in faces:
#根据人脸坐标和长度,宽度画出矩形
img = cv2.rectangle(img, (x, y), (x+w, y+h),(255, 0 ,0), 2)
#确定人脸范围,在人脸上搜索其他特征
face_area = img[y:y+h, x:x+w]
#人眼检测
eyes = eye_cascade.detectMultiScale(face_area, 1.3, 2)
for (ex, ey, ew, eh) in eyes:
cv2.rectangle(face_area, (ex, ey), (ex + ew, ey + eh), (255, 0 ,0), 1)
#嘴巴检测
mouth = mouth_cascade.detectMultiScale(face_area, 1.5, 2)
for (mx, my, mw, mh) in mouth:
cv2.rectangle(face_area, (mx, my), (mx + mw, my + mh), (0, 0, 255), 2)
# 鼻子检测
nose = nose_cascade.detectMultiScale(face_area, 1.2, 5)
for (nx, ny, nw, nh) in nose:
cv2.rectangle(face_area, (nx, ny), (nx + nw, ny + nh), (255, 0, 255), 2)
#画面显示
cv2.imshow('mytest', img)
#设置退出按钮
key_pressed = cv2.waitKey(100)
print('单机窗口,输入按键,电脑按键为',key_pressed,'按esc键结束')
if key_pressed == 27:
break
#关闭摄像头
cap.release()
#关闭图像窗口
cv2.destroyAllWindows()