- 谷歌:对比学习将LLM转为嵌入模型
大模型任我行
大模型-成熟基座人工智能自然语言处理语言模型论文笔记
标题:GeminiEmbedding:GeneralizableEmbeddingsfromGemini来源:arXiv,2503.07891摘要在本报告中,我们介绍了Gemini嵌入,这是一种最先进的嵌入模型,它利用了Gemini、Google最有能力的大型语言模型的力量。利用Gemini固有的多语言和代码理解能力,GeminiEmbedding为跨越多种语言和文本模式的文本生成高度可概括的嵌入
- rust学习笔记16-206.反转链表(递归)
水蜜桃one
学习笔记链表
rust函数递归在14中已经提到,接下来我们把206.反转链表,用递归法实现递归函数通常包含两个主要部分:基准条件(BaseCase):递归终止的条件,避免无限递归。递归步骤(RecursiveStep):将问题分解为更小的子问题,并调用自身来解决这些子问题。//Definitionforsingly-linkedlist.#[derive(PartialEq,Eq,Clone,Debug)]pu
- yum install locate出现Error: Unable to find match: locate解决方案
爱编程的喵喵
Linux解决方案linuxlocateyum解决方案
大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的知识进行总结与归纳,不仅形成深入且独到的理解,而且能够帮助新手快速入门。 本文主要介绍了yuminstalllocate出现
- GraphCube、Spark和深度学习技术赋能快消行业关键运营环节
weixin_30777913
开发语言大数据深度学习人工智能spark
在快消品(FMCG)行业,需求计划(DemandPlanning)、库存管理(InventoryManagement)和需求供应管理(DemandSupplyManagement)是影响企业整体效率和利润水平的关键运营环节。GraphCube图多维数据集技术、Spark大数据分析处理技术和深度学习技术的结合,为这些环节提供了智能化、动态化和实时化的解决方案,显著提升业务运营效率和企业利润。一、技术
- 【人工智能机器学习基础篇】——深入详解无监督学习之降维:PCA与t-SNE的关键概念与核心原理
猿享天开
人工智能数学基础专讲人工智能机器学习无监督学习降维
深入详解无监督学习之降维:PCA与t-SNE的关键概念与核心原理在当今数据驱动的世界中,数据维度的增多带来了计算复杂性和存储挑战,同时也可能导致模型性能下降,这一现象被称为“维度诅咒”(CurseofDimensionality)。降维作为一种重要的特征提取和数据预处理技术,旨在通过减少数据的维度,保留其主要信息,从而简化数据处理过程,并提升模型的性能。本文将深入探讨两种广泛应用于无监督学习中的降
- 顺序表以及顺序表的操作(数据结构初阶)
猫天帝
数据结构
线性表在学习顺序表之前,我们需要先了解一下什么是线性表。线性表(linearlist)是n个具有相同特性的数据元素的有限序列。线性表是一种在实际中广泛使用的数据结构,常见的线性表:顺序表、链表、栈、队列、字符串...线性表在逻辑上是线性结构,也就说是连续的一条直线。但是在物理结构上并不一定是连续的,线性表在物理上存储时,通常以数组和链式结构的形式存储。物理结构与逻辑结构:所谓物理结构,就是数据实际
- 解决Ubuntu报错 E: Unable to locate package yum
SH-ke
ubuntuyumapt
开门见山,Ubuntu的包管理工具是apt-get,所以不必再安装yum。如果要安装其他包需要使用apt-get命令。#这里以locate命令为例sudoapt-getinstallmlocate下文就是问题解决的全过程了。1.报错E:Unabletolocatepackageyum我在学习Linux命令的时候需要使用locate命令,但是Ubuntu的系统里没有安装locate命令。根据弹幕的指
- 模型上下文协议 (MCP)是什么?Model Context Protocol 需要你了解一下
同学小张
学习AIGCAI-nativeagigpt开源协议
大家好,我是同学小张,+v:jasper_8017一起交流,持续学习AI大模型应用实战案例,持续分享,欢迎大家点赞+关注,订阅我的大模型专栏,共同学习和进步。在人工智能领域,ModelContextProtocol(MCP)正逐渐成为连接AI模型与各类数据源及工具的重要标准。MCP究竟为何物?它又将如何改变AI应用的开发与使用?文章目录0.概念1.MCP的总体架构2.为何使用MCP?3.我的理解4
- 生成式对抗网络在人工智能艺术创作中的应用与创新研究
辛迎蕌
人工智能
摘要本文深入探究生成式对抗网络(GAN)在人工智能艺术创作领域的应用与创新。通过剖析GAN核心原理,阐述其在图像、音乐、文学等艺术创作中的实践,分析面临的挑战与创新方向,呈现GAN对艺术创作模式的变革,为理解人工智能与艺术融合发展提供全面视角。一、引言在人工智能与艺术深度融合的时代浪潮中,生成式对抗网络(GAN)作为一项突破性技术,为艺术创作带来了全新的可能性。它打破传统创作边界,以独特的对抗学习
- 知识图谱在人工智能语义理解与推理中的关键作用及发展研究
@王威&
人工智能
摘要本文聚焦知识图谱,深入剖析其在人工智能语义理解与推理中的核心作用。阐述知识图谱的构建原理、表示方法,分析其在自然语言处理、智能问答系统、推荐系统等多领域助力语义理解与推理的应用,探讨面临的挑战并展望未来发展方向,全面呈现知识图谱对人工智能发展的重要价值与深远影响。一、引言在人工智能追求更精准理解和处理人类语言与知识的进程中,知识图谱成为关键技术。它以结构化形式组织海量知识,揭示实体间复杂关系,
- HarmonyOS实战开发-如何打造购物商城APP。
码牛程序猿
鸿蒙工程师HarmonyOS鸿蒙harmonyosOpenHarmony鸿蒙鸿蒙应用开发华为鸿蒙开发HarmonyOS
今天给大家分享一个非常好的实战项目,购物商城,购物商城是一个集购物、娱乐、服务于一体的综合性平台,致力于为消费者提供一站式的购物体验。各种功能都有涉及,最适合实现学习。做好商城项目,肯定会把开发中遇到的百分之60的技术得到实战的经验。下面介绍一下商城的主要模块:首页1,搜索框,点击进入搜索页面2,顶部分类,通过不同分类查询对应信息3,广告轮播,自动切换图片,可以进行点击进入4,商品列表,展示每个项
- 第二十九篇 数据仓库与商务智能:技术演进与前沿趋势深度解析
随缘而动,随遇而安
数据库数据仓库大数据数据库架构数据库开发
声明:文章内容仅供参考,需仔细甄别。文中技术名称属相关方商标,仅作技术描述;代码示例为交流学习用途,部分参考开源文档(Apache2.0/GPLv3);案例数据已脱敏,技术推荐保持中立;法规解读仅供参考,请以《网络安全法》《数据安全法》官方解释为准。目录一、核心差异:技术定位与实现路径1.1核心能力矩阵二、协同关系:现代数据供应链的双引擎2.1数据价值链协同2.2典型技术栈集成三、前沿技术动态(2
- Flink启动任务
swg321321
flink大数据
Flink以本地运行作为解读例如:第一章Python机器学习入门之pandas的使用提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录Flink前言StreamExecutionEnvironmentLocalExecutorMiniClusterStreamGraph二、使用步骤1.引入库2.读入数据总结前言提示:这里可以添加本文要记录的大概内容:例如:随着人工智能的不断发
- 【工具】gdb使用详细介绍
努力努力再努力~~
linux疑难问题排查实战gdblinux问题调试
linux问题排查实战专栏,分享了作为公司专家,在解决内存、性能、各类死机等疑难问题的排查经验,认真学习可以让你在日后工作中大放光彩。前言在工作中,无论是学习代码流程还是问题的定位,GDB都显得尤为重要,多掌握一些命令可以提升我们的效率和解决问题的能力;按照我的理解,对GDB的掌握程度可以分为三种人:基础命令,大家都知道相对高阶一点的,少数人了解,掌握之后可以提升调试解决问题的效率需要结合反汇编、
- 计算机专业毕业设计题目推荐(新颖选题)本科计算机人工智能专业相关毕业设计选题大全✅
会写代码的羊
毕设选题课程设计人工智能毕业设计毕设题目毕业设计题目aiAI编程
文章目录前言最新毕设选题(建议收藏起来)本科计算机人工智能专业相关的毕业设计选题毕设作品推荐前言2025全新毕业设计项目博主介绍:✌全网粉丝10W+,CSDN全栈领域优质创作者,博客之星、掘金/华为云/阿里云等平台优质作者。技术范围:SpringBoot、Vue、SSM、HLMT、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、小程序、大数据、机器学习等设计与开发。主要内容:免费功能
- 基于流程的记事梳理rm -i学习步骤
鸭梨山大哎
linux学习
内在化理解rm-i回忆一下你整理书架的经历。书架上摆满了各种书籍(文件),你想要扔掉一些不再需要的书。普通的清理方式就像直接使用rm命令,可能会不小心把一些本不想扔掉的书也一起扔掉了。而当你使用类似rm-i的方式时,每拿起一本书准备扔掉,你都会先问自己:“我真的不再需要这本书了吗?”只有在你确认后,才会把书扔掉。这种方式让你在整理书架时更加谨慎,减少误扔重要书籍的可能性,和在电脑上使用rm-i谨慎
- 《深度剖析:BERT与GPT——自然语言处理架构的璀璨双星》
人工智能深度学习
在自然语言处理(NLP)的广袤星空中,BERT(BidirectionalEncoderRepresentationsfromTransformers)与GPT(GenerativePretrainedTransformer)系列模型宛如两颗最为耀眼的星辰,引领着NLP技术不断迈向新的高度。它们基于独特的架构设计,以强大的语言理解与生成能力,彻底革新了NLP的研究与应用范式,成为学界和业界竞相探索
- C语言的setjmp和longjmp
ADM实验室
编程语言c语言c++
摘要本文描述了C语言中setjmp和longjmp函数的功能和原理,目的是为学习SRS协程原理打下基础。异常处理我们知道,在C++语言中,我们可以通过trycatch机制来捕获函数中的异常,然后从代码正常执行流程突然跳出到catch关键词描述的异常处理代码分支中。在C语言中,没有C++语言这种内置的异常捕获机制,该如何实现类似的功能呢?方法有两个,一是用操作系统提供的异常处理机制,但是这个破坏了C
- 【机器学习】建模流程
CH3_CH2_CHO
什么?!是机器学习!!机器学习人工智能线性回归逻辑回归
1、数据获取1.1来源数据获取是机器学习建模的第一步,常见的数据来源包括数据库、API、网络爬虫等。数据库是企业内部常见的数据存储方式,例如:MySQL、Oracle等关系型数据库,以及MongoDB等非关系型数据库,它们能够存储大量的结构化和非结构化数据API(应用程序编程接口)提供了从外部获取数据的便捷方式,例如:社交媒体平台的API可以获取用户发布的内容和互动信息网络爬虫则适用于从网页中提取
- 深入分析串口使用rs485功能的内部机制之使用gpio控制传输方向读取rs485温湿度传感器数据(第一期)
@曙光,
linux网络嵌入式
前言首先这是一篇涉及内核分析的,学习这篇文章最好是打开内核源码跟着我的分析去看,我参考的内核源码是linux5.4内核,也可以辅助ai去分析。ModbusRTU读取rs485温湿度传感器使用ModbusRTU读取rs485温湿度传感器有俩种方法,第一种采用gpio控制数据的传输方向:高电平表示主发从收,低电平表示主收从发。第二种采用硬件流控的方法使用串口的rts引脚和cts引脚自动控制收发方向,接
- day11 学习笔记
豆豆
学习笔记python
文章目录前言一、类方法二、静态方法三、构造方法四、魔术方法前言通过今天的学习,我掌握了更多Python中有关面向对象编程思想中方法的概念与操作,包括类方法,静态方法,构造方法,魔术方法一、类方法类方法是属于类的行为,一般使用类而非对象进行调用类方法需要使用@classmethod装饰器定义类方法至少有一个形参用于绑定类,约定为cls类和该类的实例都可以调用类方法,但一般不用实例进行调用类方法不能访
- 《Operating System Concepts》阅读笔记:p449-p459
操作系统
《OperatingSystemConcepts》学习第35天,p449-p459总结,总计11页。一、技术总结1.NVM&SSDFlash-memory-basedNVMisfrequentlyusedinadisk-drive-likecontainer,inwhichcaseitiscalledasolid-statedisk(SSD)(Figure11.3)。2.HDDScheduling
- Marker可以快速且准确地将PDF转换为markdown格式。
星霜笔记
开源关注简介免费源码pdf
MarkerMarker可以快速且准确地将PDF转换为markdown格式。支持多种文档类型(针对书籍和科学论文进行了优化)支持所有语言移除页眉/页脚/其他杂质格式化表格和代码块提取并保存图像以及markdown将大多数方程转换为latex支持在GPU、CPU或MPS上运行工作原理Marker是一个由深度学习模型组成的管道:提取文本,必要时进行OCR处理(启发式算法,surya,tesseract
- 常见FUZZ姿势与工具实战:从未知目录到备份文件漏洞挖掘
w2361734601
web安全安全
本文仅供学习交流使用,严禁用于非法用途。未经授权,禁止对任何网站或系统进行未授权的测试或攻击。因使用本文所述技术造成的任何后果,由使用者自行承担。请严格遵守《网络安全法》及相关法律法规!目录本文仅供学习交流使用,严禁用于非法用途。未经授权,禁止对任何网站或系统进行未授权的测试或攻击。因使用本文所述技术造成的任何后果,由使用者自行承担。请严格遵守《网络安全法》及相关法律法规!一、FUZZ技术概述二、
- Hugging Face预训练GPT微调ChatGPT(微调入门!新手友好!)
y江江江江
机器学习大模型gptchatgpt
HuggingFace预训练GPT微调ChatGPT(微调入门!新手友好!)在实战中,⼤多数情况下都不需要从0开始训练模型,⽽是使⽤“⼤⼚”或者其他研究者开源的已经训练好的⼤模型。在各种⼤模型开源库中,最具代表性的就是HuggingFace。HuggingFace是⼀家专注于NLP领域的AI公司,开发了⼀个名为Transformers的开源库,该开源库拥有许多预训练后的深度学习模型,如BERT、G
- 2020 年 9 月大学英语四级考试真题(第 1 套)——纯享题目版
fo安方
英语—四级CET4四级英语学习
个人主页:fo安方的博客✨个人简历:大家好,我是fo安方,目前中南大学MBA在读,也考取过HCIECloudComputing、CCIESecurity、PMP、CISP、RHCE、CCNPRS、PEST3等证书。兴趣爱好:b站天天刷,题目常常看,运动偶尔做,学习需劳心,寻觅些乐趣。欢迎大家:这里是CSDN,是我记录我的日常学习,偶尔生活的地方,喜欢的话请一键三连,有问题请评论区讨论。导读页:这是
- CVPR 2024 | 低分辨率引领方向:通过自监督学习提升超分辨率的泛化能力
小白学视觉
计算机顶会顶刊论文解读计算机视觉深度学习CVPR计算机顶会论文解读
论文信息题目:Low-ResLeadstheWay:ImprovingGeneralizationforSuper-ResolutionbySelf-SupervisedLearning低分辨率引领方向:通过自监督学习提升超分辨率的泛化能力作者:HaoyuChen,WenboLi,JinjinGu,JingjingRen,HaozeSun,XueyiZou,ZhensongZhang,Youlia
- Open-Sora - 为所有人实现高效的视频制作大众化
小众AI
AI开源音视频人工智能AI编程
GitHub:https://github.com/hpcaitech/Open-Sora更多AI开源软件:发现分享好用的AI工具、AI开源软件、AI模型、AI变现-小众AI这是一款开源的SOTA(State-of-the-Art)视频生成模型,仅用20万美元(224张GPU)就能训练出商业级11B参数的视频生成大模型。它采用Python语言和PyTorch深度学习框架开发,具有生成速度快、资源消
- OWL - 优化劳动力学习的通用智能体
小众AI
AI开源学习人工智能AI编程
GitHub:https://github.com/camel-ai/owl更多AI开源软件:发现分享好用的AI工具、AI开源软件、AI模型、AI变现-小众AIOWL是一个前沿的多智能体协作框架,推动任务自动化的边界,构建在CAMEL-AIFramework。愿景是彻底变革AI智能体协作解决现实任务的方式。通过利用动态智能体交互,OWL实现了跨多领域更自然、高效且稳健的任务自动化。OWL在GAIA
- 【Linux】Linux下调试器gdb的使用
安 度 因
Linuxlinux运维服务器测试工具调试
作者主页:@安度因学习社区:StackFrame专栏链接:Linux文章目录一、前言二、铺垫三、指令集和使用1、指令集2、演示四、结语如果无聊的话,就来逛逛我的博客栈吧!一、前言前几篇Linux博客中,我们分别学习了与编辑、编译、自动化构建代码、上传代码的工具。而今天,我们将学习最后一个工具——Linux下的调试器gdb
- LeetCode[Math] - #66 Plus One
Cwind
javaLeetCode题解AlgorithmMath
原题链接:#66 Plus One
要求:
给定一个用数字数组表示的非负整数,如num1 = {1, 2, 3, 9}, num2 = {9, 9}等,给这个数加上1。
注意:
1. 数字的较高位存在数组的头上,即num1表示数字1239
2. 每一位(数组中的每个元素)的取值范围为0~9
难度:简单
分析:
题目比较简单,只须从数组
- JQuery中$.ajax()方法参数详解
AILIKES
JavaScriptjsonpjqueryAjaxjson
url: 要求为String类型的参数,(默认为当前页地址)发送请求的地址。
type: 要求为String类型的参数,请求方式(post或get)默认为get。注意其他http请求方法,例如put和 delete也可以使用,但仅部分浏览器支持。
timeout: 要求为Number类型的参数,设置请求超时时间(毫秒)。此设置将覆盖$.ajaxSetup()方法的全局
- JConsole & JVisualVM远程监视Webphere服务器JVM
Kai_Ge
JVisualVMJConsoleWebphere
JConsole是JDK里自带的一个工具,可以监测Java程序运行时所有对象的申请、释放等动作,将内存管理的所有信息进行统计、分析、可视化。我们可以根据这些信息判断程序是否有内存泄漏问题。
使用JConsole工具来分析WAS的JVM问题,需要进行相关的配置。
首先我们看WAS服务器端的配置.
1、登录was控制台https://10.4.119.18
- 自定义annotation
120153216
annotation
Java annotation 自定义注释@interface的用法 一、什么是注释
说起注释,得先提一提什么是元数据(metadata)。所谓元数据就是数据的数据。也就是说,元数据是描述数据的。就象数据表中的字段一样,每个字段描述了这个字段下的数据的含义。而J2SE5.0中提供的注释就是java源代码的元数据,也就是说注释是描述java源
- CentOS 5/6.X 使用 EPEL YUM源
2002wmj
centos
CentOS 6.X 安装使用EPEL YUM源1. 查看操作系统版本[root@node1 ~]# uname -a Linux node1.test.com 2.6.32-358.el6.x86_64 #1 SMP Fri Feb 22 00:31:26 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux [root@node1 ~]#
- 在SQLSERVER中查找缺失和无用的索引SQL
357029540
SQL Server
--缺失的索引
SELECT avg_total_user_cost * avg_user_impact * ( user_scans + user_seeks ) AS PossibleImprovement ,
last_user_seek ,
 
- Spring3 MVC 笔记(二) —json+rest优化
7454103
Spring3 MVC
接上次的 spring mvc 注解的一些详细信息!
其实也是一些个人的学习笔记 呵呵!
- 替换“\”的时候报错Unexpected internal error near index 1 \ ^
adminjun
java“\替换”
发现还是有些东西没有刻子脑子里,,过段时间就没什么概念了,所以贴出来...以免再忘...
在拆分字符串时遇到通过 \ 来拆分,可是用所以想通过转义 \\ 来拆分的时候会报异常
public class Main {
/*
- POJ 1035 Spell checker(哈希表)
aijuans
暴力求解--哈希表
/*
题意:输入字典,然后输入单词,判断字典中是否出现过该单词,或者是否进行删除、添加、替换操作,如果是,则输出对应的字典中的单词
要求按照输入时候的排名输出
题解:建立两个哈希表。一个存储字典和输入字典中单词的排名,一个进行最后输出的判重
*/
#include <iostream>
//#define
using namespace std;
const int HASH =
- 通过原型实现javascript Array的去重、最大值和最小值
ayaoxinchao
JavaScriptarrayprototype
用原型函数(prototype)可以定义一些很方便的自定义函数,实现各种自定义功能。本次主要是实现了Array的去重、获取最大值和最小值。
实现代码如下:
<script type="text/javascript">
Array.prototype.unique = function() {
var a = {};
var le
- UIWebView实现https双向认证请求
bewithme
UIWebViewhttpsObjective-C
什么是HTTPS双向认证我已在先前的博文 ASIHTTPRequest实现https双向认证请求
中有讲述,不理解的读者可以先复习一下。本文是用UIWebView来实现对需要客户端证书验证的服务请求,网上有些文章中有涉及到此内容,但都只言片语,没有讲完全,更没有完整的代码,让人困扰不已。但是此知
- NoSQL数据库之Redis数据库管理(Redis高级应用之事务处理、持久化操作、pub_sub、虚拟内存)
bijian1013
redis数据库NoSQL
3.事务处理
Redis对事务的支持目前不比较简单。Redis只能保证一个client发起的事务中的命令可以连续的执行,而中间不会插入其他client的命令。当一个client在一个连接中发出multi命令时,这个连接会进入一个事务上下文,该连接后续的命令不会立即执行,而是先放到一个队列中,当执行exec命令时,redis会顺序的执行队列中
- 各数据库分页sql备忘
bingyingao
oraclesql分页
ORACLE
下面这个效率很低
SELECT * FROM ( SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_FS_RETURN order by id desc) A ) WHERE RN <20;
下面这个效率很高
SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_
- 【Scala七】Scala核心一:函数
bit1129
scala
1. 如果函数体只有一行代码,则可以不用写{},比如
def print(x: Int) = println(x)
一行上的多条语句用分号隔开,则只有第一句属于方法体,例如
def printWithValue(x: Int) : String= println(x); "ABC"
上面的代码报错,因为,printWithValue的方法
- 了解GHC的factorial编译过程
bookjovi
haskell
GHC相对其他主流语言的编译器或解释器还是比较复杂的,一部分原因是haskell本身的设计就不易于实现compiler,如lazy特性,static typed,类型推导等。
关于GHC的内部实现有篇文章说的挺好,这里,文中在RTS一节中详细说了haskell的concurrent实现,里面提到了green thread,如果熟悉Go语言的话就会发现,ghc的concurrent实现和Go有点类
- Java-Collections Framework学习与总结-LinkedHashMap
BrokenDreams
LinkedHashMap
前面总结了java.util.HashMap,了解了其内部由散列表实现,每个桶内是一个单向链表。那有没有双向链表的实现呢?双向链表的实现会具备什么特性呢?来看一下HashMap的一个子类——java.util.LinkedHashMap。
- 读《研磨设计模式》-代码笔记-抽象工厂模式-Abstract Factory
bylijinnan
abstract
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* Abstract Factory Pattern
* 抽象工厂模式的目的是:
* 通过在抽象工厂里面定义一组产品接口,方便地切换“产品簇”
* 这些接口是相关或者相依赖的
- 压暗面部高光
cherishLC
PS
方法一、压暗高光&重新着色
当皮肤很油又使用闪光灯时,很容易在面部形成高光区域。
下面讲一下我今天处理高光区域的心得:
皮肤可以分为纹理和色彩两个属性。其中纹理主要由亮度通道(Lab模式的L通道)决定,色彩则由a、b通道确定。
处理思路为在保持高光区域纹理的情况下,对高光区域着色。具体步骤为:降低高光区域的整体的亮度,再进行着色。
如果想简化步骤,可以只进行着色(参看下面的步骤1
- Java VisualVM监控远程JVM
crabdave
visualvm
Java VisualVM监控远程JVM
JDK1.6开始自带的VisualVM就是不错的监控工具.
这个工具就在JAVA_HOME\bin\目录下的jvisualvm.exe, 双击这个文件就能看到界面
通过JMX连接远程机器, 需要经过下面的配置:
1. 修改远程机器JDK配置文件 (我这里远程机器是linux).
 
- Saiku去掉登录模块
daizj
saiku登录olapBI
1、修改applicationContext-saiku-webapp.xml
<security:intercept-url pattern="/rest/**" access="IS_AUTHENTICATED_ANONYMOUSLY" />
<security:intercept-url pattern=&qu
- 浅析 Flex中的Focus
dsjt
htmlFlexFlash
关键字:focus、 setFocus、 IFocusManager、KeyboardEvent
焦点、设置焦点、获得焦点、键盘事件
一、无焦点的困扰——组件监听不到键盘事件
原因:只有获得焦点的组件(确切说是InteractiveObject)才能监听到键盘事件的目标阶段;键盘事件(flash.events.KeyboardEvent)参与冒泡阶段,所以焦点组件的父项(以及它爸
- Yii全局函数使用
dcj3sjt126com
yii
由于YII致力于完美的整合第三方库,它并没有定义任何全局函数。yii中的每一个应用都需要全类别和对象范围。例如,Yii::app()->user;Yii::app()->params['name'];等等。我们可以自行设定全局函数,使得代码看起来更加简洁易用。(原文地址)
我们可以保存在globals.php在protected目录下。然后,在入口脚本index.php的,我们包括在
- 设计模式之单例模式二(解决无序写入的问题)
come_for_dream
单例模式volatile乱序执行双重检验锁
在上篇文章中我们使用了双重检验锁的方式避免懒汉式单例模式下由于多线程造成的实例被多次创建的问题,但是因为由于JVM为了使得处理器内部的运算单元能充分利用,处理器可能会对输入代码进行乱序执行(Out Of Order Execute)优化,处理器会在计算之后将乱序执行的结果进行重组,保证该
- 程序员从初级到高级的蜕变
gcq511120594
框架工作PHPandroidhtml5
软件开发是一个奇怪的行业,市场远远供不应求。这是一个已经存在多年的问题,而且随着时间的流逝,愈演愈烈。
我们严重缺乏能够满足需求的人才。这个行业相当年轻。大多数软件项目是失败的。几乎所有的项目都会超出预算。我们解决问题的最佳指导方针可以归结为——“用一些通用方法去解决问题,当然这些方法常常不管用,于是,唯一能做的就是不断地尝试,逐个看看是否奏效”。
现在我们把淫浸代码时间超过3年的开发人员称为
- Reverse Linked List
hcx2013
list
Reverse a singly linked list.
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
p
- Spring4.1新特性——数据库集成测试
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- C# Ajax上传图片同时生成微缩图(附Demo)
liyonghui160com
1.Ajax无刷新上传图片,详情请阅我的这篇文章。(jquery + c# ashx)
2.C#位图处理 System.Drawing。
3.最新demo支持IE7,IE8,Fir
- Java list三种遍历方法性能比较
pda158
java
从c/c++语言转向java开发,学习java语言list遍历的三种方法,顺便测试各种遍历方法的性能,测试方法为在ArrayList中插入1千万条记录,然后遍历ArrayList,发现了一个奇怪的现象,测试代码例如以下:
package com.hisense.tiger.list;
import java.util.ArrayList;
import java.util.Iterator;
- 300个涵盖IT各方面的免费资源(上)——商业与市场篇
shoothao
seo商业与市场IT资源免费资源
A.网站模板+logo+服务器主机+发票生成
HTML5 UP:响应式的HTML5和CSS3网站模板。
Bootswatch:免费的Bootstrap主题。
Templated:收集了845个免费的CSS和HTML5网站模板。
Wordpress.org|Wordpress.com:可免费创建你的新网站。
Strikingly:关注领域中免费无限的移动优
- localStorage、sessionStorage
uule
localStorage
W3School 例子
HTML5 提供了两种在客户端存储数据的新方法:
localStorage - 没有时间限制的数据存储
sessionStorage - 针对一个 session 的数据存储
之前,这些都是由 cookie 完成的。但是 cookie 不适合大量数据的存储,因为它们由每个对服务器的请求来传递,这使得 cookie 速度很慢而且效率也不