DCGAN实战——手写数字生成(简单易上手)

DCGAN实战——手写数字生成(简单易上手)_第1张图片
左边为真图,右边为生成假图


目录

  • 1.学习目标
  • 2.环境配置
  • 3. 代码分析
    • 3.1 数据预处理(data.py)
    • 3.2 模型Generator,Discriminator,权重初始化(model.py)
    • 3.3 神经网络训练(net.py)
    • 3.4 主函数(main.py)
  • 4.训练过程
  • 5.完整代码
  • 6.参考博客

1.学习目标

使用DCGAN训练MINIST数据集,生成手写数字

2.环境配置

  • pytorch、cuda(可以点击参考安装避坑)
  • 一些库如IPython、numpy、matploblib,可以根据提示安装。

3. 代码分析

3.1 数据预处理(data.py)

from torch.utils.data import DataLoader
from torchvision import utils, datasets, transforms
#导入包

class ReadData():								#定义数据类
    def __init__(self,dataroot,image_size=64):	
        self.root=dataroot
        self.image_size=image_size
        self.dataset=self.getdataset()
    def getdataset(self):
        #3.dataset
        train_data = datasets.MNIST(
            root=self.root,
            train=True,
            transform=transforms.Compose([
                transforms.Resize(self.image_size),
                transforms.ToTensor(),
                transforms.Normalize((0.5,), (0.5,))
            ]),
            download=True
        )
        test_data = datasets.MNIST(
            root=self.root,
            train=False,
            transform=transforms.Compose([
                transforms.Resize(self.image_size),
                transforms.ToTensor(),
                transforms.Normalize((0.5,), (0.5,))
            ])
        )
        dataset = train_data+test_data
        # print(f'Total Size of Dataset: {len(dataset)}')
        return dataset

    def getdataloader(self,batch_size=128):
        #4.dataloader
        dataloader = DataLoader(
            dataset=self.dataset,
            batch_size=batch_size,
            shuffle=True,
            num_workers=0
        )
        return dataloader

3.2 模型Generator,Discriminator,权重初始化(model.py)

import torch.nn as nn

class Generator(nn.Module):				#模型Generator
    def __init__(self, nz,ngf,nc):
        super(Generator, self).__init__()
        self.nz = nz
        self.ngf = ngf
        self.nc=nc

        self.main = nn.Sequential(
            # input is Z, going into a convolution
            nn.ConvTranspose2d(self.nz, self.ngf * 8, 4, 1, 0, bias=False),
            nn.BatchNorm2d(self.ngf * 8),
            nn.ReLU(True),
            # state size. (ngf*8) x 4 x 4
            nn.ConvTranspose2d(self.ngf * 8, self.ngf * 4, 4, 2, 1, bias=False),
            nn.BatchNorm2d(self.ngf * 4),
            nn.ReLU(True),
            # state size. (ngf*4) x 8 x 8
            nn.ConvTranspose2d(self.ngf * 4, self.ngf * 2, 4, 2, 1, bias=False),
            nn.BatchNorm2d(self.ngf * 2),
            nn.ReLU(True),
            # state size. (ngf*2) x 16 x 16
            nn.ConvTranspose2d(self.ngf * 2, self.ngf, 4, 2, 1, bias=False),
            nn.BatchNorm2d(self.ngf),
            nn.ReLU(True),
            # state size. (ngf) x 32 x 32
            nn.ConvTranspose2d(self.ngf, self.nc, 4, 2, 1, bias=False),
            nn.Tanh()
            # state size. (nc) x 64 x 64
        )

    def forward(self, input):
        return self.main(input)



class Discriminator(nn.Module):
    def __init__(self, ndf,nc):
        super(Discriminator, self).__init__()
        self.ndf=ndf
        self.nc=nc
        self.main = nn.Sequential(
            # input is (nc) x 64 x 64
            nn.Conv2d(self.nc, self.ndf, 4, 2, 1, bias=False),
            nn.LeakyReLU(0.2, inplace=True),
            # state size. (ndf) x 32 x 32
            nn.Conv2d(self.ndf, self.ndf * 2, 4, 2, 1, bias=False),
            nn.BatchNorm2d(self.ndf * 2),
            nn.LeakyReLU(0.2, inplace=True),
            # state size. (ndf*2) x 16 x 16
            nn.Conv2d(self.ndf * 2, self.ndf * 4, 4, 2, 1, bias=False),
            nn.BatchNorm2d(self.ndf * 4),
            nn.LeakyReLU(0.2, inplace=True),
            # state size. (ndf*4) x 8 x 8
            nn.Conv2d(self.ndf * 4, self.ndf * 8, 4, 2, 1, bias=False),
            nn.BatchNorm2d(self.ndf * 8),
            nn.LeakyReLU(0.2, inplace=True),
            # state size. (ndf*8) x 4 x 4
            nn.Conv2d(self.ndf * 8, 1, 4, 1, 0, bias=False),
            # state size. (1) x 1 x 1
            nn.Sigmoid()
        )

    def forward(self, input):
        return self.main(input)

#7.initial weight
def weights_init(m):
    classname = m.__class__.__name__
    if classname.find('Conv') != -1:
        nn.init.normal_(m.weight.data, 0.0, 0.02)
    elif classname.find('BatchNorm') != -1:
        nn.init.normal_(m.weight.data, 1.0, 0.02)
        nn.init.constant_(m.bias.data, 0)

3.3 神经网络训练(net.py)

import torch
import torch.nn as nn
from torchvision import utils, datasets, transforms
import time
import matplotlib.pyplot as plt
import matplotlib.animation as animation
from IPython.display import HTML


class DCGAN():
    def __init__(self,nz, lr,beta1,device, model_save_path,figure_save_path,generator, discriminator, data_loader,):
        self.nz=nz
        self.real_label=1
        self.fake_label=0
        self.device = device
        self.model_save_path=model_save_path
        self.figure_save_path=figure_save_path

        self.G = generator.to(device)
        self.D = discriminator.to(device)
        self.opt_G=torch.optim.Adam(self.G.parameters(), lr=lr, betas=(beta1, 0.999))
        self.opt_D = torch.optim.Adam(self.D.parameters(), lr=lr, betas=(beta1, 0.999))
        self.criterion = nn.BCELoss().to(device)

        self.dataloader=data_loader
        self.fixed_noise = torch.randn(100, nz, 1, 1, device=device)


        self.img_list = []
        self.G_loss_list = []
        self.D_loss_list = []
        self.D_x_list = []
        self.D_z_list = []



    def train(self,num_epochs):
        loss_tep = 10
        G_loss=0
        D_loss=0
        print("Starting Training Loop...")

        # For each epoch
        for epoch in range(num_epochs):
        #**********计时*********************
            beg_time = time.time()
            # For each batch in the dataloader
            for i, data in enumerate(self.dataloader):
                ############################
                # (1) Update D network: maximize log(D(x)) + log(1 - D(G(z)))
                ###########################
                x = data[0].to(self.device)
                b_size = x.size(0)
                lbx = torch.full((b_size,), self.real_label, dtype=torch.float, device=self.device)
                D_x = self.D(x).view(-1)
                LossD_x = self.criterion(D_x, lbx)
                D_x_item = D_x.mean().item()
                # print("log(D(x))")

                z = torch.randn(b_size, self.nz, 1, 1, device=self.device)
                gz = self.G(z)
                lbz1 = torch.full((b_size,), self.fake_label, dtype=torch.float, device=self.device)
                D_gz1 = self.D(gz.detach()).view(-1)
                LossD_gz1 = self.criterion(D_gz1, lbz1)
                D_gz1_item = D_gz1.mean().item()
                # print("log(1 - D(G(z)))")

                LossD = LossD_x + LossD_gz1
                # print("log(D(x)) + log(1 - D(G(z)))")

                self.opt_D.zero_grad()
                LossD.backward()
                self.opt_D.step()
                # print("update LossD")
                D_loss+=LossD

                ############################
                # (2) Update G network: maximize log(D(G(z)))
                ###########################
                lbz2 = torch.full((b_size,), self.real_label, dtype=torch.float, device=self.device) # fake labels are real for generator cost
                D_gz2 = self.D(gz).view(-1)
                D_gz2_item = D_gz2.mean().item()
                LossG = self.criterion(D_gz2, lbz2)
                # print("log(D(G(z)))")

                self.opt_G.zero_grad()
                LossG.backward()
                self.opt_G.step()
                # print("update LossG")
                G_loss+=LossG

                end_time = time.time()
            # **********计时*********************
                run_time = round(end_time - beg_time)
                # print('lalala')
                print(
                    f'Epoch: [{epoch + 1:0>{len(str(num_epochs))}}/{num_epochs}]',
                    f'Step: [{i + 1:0>{len(str(len(self.dataloader)))}}/{len(self.dataloader)}]',
                    f'Loss-D: {LossD.item():.4f}',
                    f'Loss-G: {LossG.item():.4f}',
                    f'D(x): {D_x_item:.4f}',
                    f'D(G(z)): [{D_gz1_item:.4f}/{D_gz2_item:.4f}]',
                    f'Time: {run_time}s',
                    end='\r\n'
                )
                # print("lalalal2")

                # Save Losses for plotting later
                self.G_loss_list.append(LossG.item())
                self.D_loss_list.append(LossD.item())

                # Save D(X) and D(G(z)) for plotting later
                self.D_x_list.append(D_x_item)
                self.D_z_list.append(D_gz2_item)

                # # Save the Best Model
                # if LossG < loss_tep:
                #     torch.save(self.G.state_dict(), 'model.pt')
                #     loss_tep = LossG
            torch.save(self.D.state_dict(), self.model_save_path + 'disc_{}.pth'.format(epoch))
            torch.save(self.G.state_dict(), self.model_save_path + 'gen_{}.pth'.format(epoch))
                # Check how the generator is doing by saving G's output on fixed_noise
            with torch.no_grad():
                fake = self.G(self.fixed_noise).detach().cpu()
            self.img_list.append(utils.make_grid(fake * 0.5 + 0.5, nrow=10))
            print()

        plt.figure(1,figsize=(8, 4))
        plt.title("Generator and Discriminator Loss During Training")
        plt.plot(self.G_loss_list[::100], label="G")
        plt.plot(self.D_loss_list[::100], label="D")
        plt.xlabel("iterations")
        plt.ylabel("Loss")
        plt.axhline(y=0, label="0", c="g")  # asymptote
        plt.legend()
        plt.savefig(self.figure_save_path + str(num_epochs) + 'epochs_' + 'loss.jpg', bbox_inches='tight')


        plt.figure(2,figsize=(8, 4))
        plt.title("D(x) and D(G(z)) During Training")
        plt.plot(self.D_x_list[::100], label="D(x)")
        plt.plot(self.D_z_list[::100], label="D(G(z))")
        plt.xlabel("iterations")
        plt.ylabel("Probability")
        plt.axhline(y=0.5, label="0.5", c="g")  # asymptote
        plt.legend()
        plt.savefig(self.figure_save_path + str(num_epochs) + 'epochs_' + 'D(x)D(G(z)).jpg', bbox_inches='tight')

        fig = plt.figure(3,figsize=(5, 5))
        plt.axis("off")
        ims = [[plt.imshow(item.permute(1, 2, 0), animated=True)] for item in self.img_list]
        ani = animation.ArtistAnimation(fig, ims, interval=1000, repeat_delay=1000, blit=True)
        HTML(ani.to_jshtml())
        # ani.to_html5_video()
        ani.save(self.figure_save_path + str(num_epochs) + 'epochs_' + 'generation.gif')


        plt.figure(4,figsize=(8, 4))
        # Plot the real images
        plt.subplot(1, 2, 1)
        plt.axis("off")
        plt.title("Real Images")
        real = next(iter(self.dataloader))  # real[0]image,real[1]label
        plt.imshow(utils.make_grid(real[0][:100] * 0.5 + 0.5, nrow=10).permute(1, 2, 0))

        # Load the Best Generative Model
        # self.G.load_state_dict(
        #     torch.load(self.model_save_path + 'disc_{}.pth'.format(epoch), map_location=torch.device(self.device)))
        self.G.eval()
        # Generate the Fake Images
        with torch.no_grad():
            fake = self.G(self.fixed_noise).to('cpu')
        # Plot the fake images
        plt.subplot(1, 2, 2)
        plt.axis("off")
        plt.title("Fake Images")
        fake = utils.make_grid(fake[:100] * 0.5 + 0.5, nrow=10)
        plt.imshow(fake.permute(1, 2, 0))

        # Save the comparation result
        plt.savefig(self.figure_save_path + str(num_epochs) + 'epochs_' + 'result.jpg', bbox_inches='tight')
        plt.show()




    def test(self,epoch):
        # Size of the Figure
        plt.figure(figsize=(8, 4))

        # Plot the real images
        plt.subplot(1, 2, 1)
        plt.axis("off")
        plt.title("Real Images")
        real = next(iter(self.dataloader))#real[0]image,real[1]label
        plt.imshow(utils.make_grid(real[0][:100] * 0.5 + 0.5, nrow=10).permute(1, 2, 0))

        # Load the Best Generative Model
        self.G.load_state_dict(torch.load(self.model_save_path + 'disc_{}.pth'.format(epoch), map_location=torch.device(self.device)))
        self.G.eval()
        # Generate the Fake Images
        with torch.no_grad():
            fake = self.G(self.fixed_noise.to(self.device))
        # Plot the fake images
        plt.subplot(1, 2, 2)
        plt.axis("off")
        plt.title("Fake Images")
        fake = utils.make_grid(fake * 0.5 + 0.5, nrow=10)
        plt.imshow(fake.permute(1, 2, 0))

        # Save the comparation result
        plt.savefig(self.figure_save_path+'result.jpg', bbox_inches='tight')
        plt.show()

3.4 主函数(main.py)

from data import ReadData
from model import Discriminator, Generator, weights_init
from net import DCGAN
import torch

ngpu=1			#定义超参数
ngf=64
ndf=64
nc=1
nz=100
lr=0.003
beta1=0.5
datapath="./data"
batchsize=100

model_save_path="./models/"
figure_save_path="./figures/"

device = torch.device('cuda:0' if (torch.cuda.is_available() and ngpu > 0) else 'cpu')

dataset=ReadData(datapath)
dataloader=dataset.getdataloader(batch_size=batchsize)

G = Generator(nz,ngf,nc).apply(weights_init)
D = Discriminator(ndf,nc).apply(weights_init)

dcgan=DCGAN(nz, lr,beta1,device, model_save_path,figure_save_path,G, D, dataloader)
dcgan.train(num_epochs=5)
# dcgan.test() 进行训练

4.训练过程

DCGAN实战——手写数字生成(简单易上手)_第2张图片
DCGAN实战——手写数字生成(简单易上手)_第3张图片
Generator和Discriminator的Loss损失曲线图
DCGAN实战——手写数字生成(简单易上手)_第4张图片
生成结果
DCGAN实战——手写数字生成(简单易上手)_第5张图片

5.完整代码

链接:https://pan.baidu.com/s/1yvgdjaGxCwwIK-6M0Py5EA
提取码:9sa6

6.参考博客

https://blog.csdn.net/qq_44031210/article/details/120100168?spm=1001.2014.3001.5506

你可能感兴趣的:(深度学习,pytorch,python)