强化学习基础 | (7) 时序差分离线控制算法Q-Learning

原文地址
作者:刘建平

在时序差分在线控制算法SARSA中我们讨论了时序差分的在线控制算法SARSA,而另一类时序差分的离线控制算法还没有讨论,因此本文我们关注于时序差分离线控制算法,主要是经典的Q-Learning算法.

Q-Learning这一篇对应Sutton书的第六章部分和UCL强化学习课程的第五讲部分。

文章目录

      • 1. Q-Learning算法的引入
      • 2. Q-Learning算法概述
      • 3. Q-Learning算法流程
      • 4. Q-Learning算法实例:Windy GridWorld
      • 5. SARSA vs Q-Learning
      • 6. Q-Learning结语

1. Q-Learning算法的引入

Q-Learning算法是一种使用时序差分求解强化学习控制问题的方法,回顾下此时我们的控制问题可以表示为:给定强化学习的5个要素:状态集S, 动作集A, 即时奖励R,衰减因子 γ \gamma γ, 探索率 ϵ \epsilon ϵ, 求解最优的动作价值函数 q ∗ q^* q和最优策略 π ∗ \pi^* π

这一类强化学习的问题求解不需要环境的状态转化模型,是不基于模型的强化学习问题求解方法。对于它的控制问题求解,和蒙特卡罗法类似,都是价值迭代,即通过价值函数(动作)的更新,来更新策略,通过策略来产生新的状态和即时奖励,进而更新价值函数。一直进行下去,直到价值函数和策略都收敛。

再回顾下时序差分法的控制问题,可以分为两类,一类是在线控制,即一直使用一个策略来更新价值函数和选择新的动作,比如我们上一篇讲到的SARSA, 而另一类是离线控制,会使用两个控制策略,一个策略用于选择新的动作,另一个策略用于更新价值函数。这一类的经典算法就是Q-Learning。

对于Q-Learning,我们会使用ϵ−贪婪法来选择新的动作,这部分和SARSA完全相同。但是对于价值函数的更新,Q-Learning使用的是贪婪法,而不是SARSA的ϵ−贪婪法。这一点就是SARSA和Q-Learning本质的区别。

2. Q-Learning算法概述

Q-Learning算法的拓扑图如下图所示:
强化学习基础 | (7) 时序差分离线控制算法Q-Learning_第1张图片
首先我们基于状态S,用ϵ−贪婪法选择到动作A,然后执行动作A,得到奖励R,并进入状态S’,此时,如果是SARSA,会继续基于状态S’,用ϵ−贪婪法选择A’,然后来更新价值函数。但是Q-Learning则不同。

对于Q-Learning,它基于状态S’,没有使用ϵ−贪婪法选择A’,而是使用贪婪法选择A’,也就是说,选择使Q(S′,a)最大的动作a作为A’来更新价值函数。用数学公式表示就是:
在这里插入图片描述
对应到上图中就是在图下方的三个黑圆圈动作中选择一个使Q(S’,a)最大的动作作为A’。

此时选择的动作只会参与价值函数的更新,不会真正的执行。价值函数更新后,新的执行动作需要基于状态S’,用ϵ−贪婪法重新选择得到。这一点也和SARSA稍有不同。对于SARSA,价值函数更新使用的A’会作为下一阶段开始时候的执行动作。

下面我们对Q-Learning算法做一个总结。

3. Q-Learning算法流程

下面我们总结下Q-Learning算法的流程。
算法输入:迭代轮数T,状态集S, 动作集A, 步长 α \alpha α,衰减因子 γ \gamma γ, 探索率 ϵ \epsilon ϵ,
输出:所有的状态和动作对应的价值Q

  1. 随机初始化所有的状态和动作对应的价值Q. 对于终止状态其Q值初始化为0.
  2. for i from 1 to T,进行迭代。
    a) 初始化S为当前状态序列的第一个状态。
    b) 用ϵ−贪婪法在当前状态S选择出动作A.
    c) 在状态S执行当前动作A,得到新状态S’和奖励R
    d) 更新价值函数Q(S,A):
    在这里插入图片描述
    e) S=S’
    f) 如果S’是终止状态,当前轮迭代完毕,否则转到步骤b)

4. Q-Learning算法实例:Windy GridWorld

我们还是使用和SARSA一样的例子来研究Q-Learning。如果对windy gridworld的问题还不熟悉,可以复习时序差分在线控制算法SARSA第4节的第二段。

完整代码

绝大部分代码和SARSA是类似的。这里我们可以重点比较和SARSA不同的部分。区别都在episode这个函数里面。

首先是初始化的时候,我们只初始化状态S,把A的产生放到了while循环里面, 而回忆下SARSA会同时初始化状态S和动作A,再去执行循环。下面这段Q-Learning的代码对应我们算法的第二步步骤a和b:

# play for an episode
def episode(q_value):
    # track the total time steps in this episode
    time = 0

    # initialize state
    state = START

    while state != GOAL:
    # choose an action based on epsilon-greedy algorithm
        if np.random.binomial(1, EPSILON) == 1:
            action = np.random.choice(ACTIONS)
        else:
            values_ = q_value[state[0], state[1], :]
            action = np.random.choice([action_ for action_, value_ in enumerate(values_) if value_ == np.max(values_)])

接着我们会去执行动作A,得到S’, 由于奖励不是终止就是-1,不需要单独计算。这部分和SARSA的代码相同。对应我们Q-Learning算法的第二步步骤c

next_state = step(state, action)
def step(state, action):
    i, j = state
    if action == ACTION_UP:
        return [max(i - 1 - WIND[j], 0), j]
    elif action == ACTION_DOWN:
        return [max(min(i + 1 - WIND[j], WORLD_HEIGHT - 1), 0), j]
    elif action == ACTION_LEFT:
        return [max(i - WIND[j], 0), max(j - 1, 0)]
    elif action == ACTION_RIGHT:
        return [max(i - WIND[j], 0), min(j + 1, WORLD_WIDTH - 1)]
    else:
        assert False

后面我们用贪婪法选择出最大的Q(S’,a),并更新价值函数,最后更新当前状态S。对应我们Q-Learning算法的第二步步骤d,e。注意SARSA这里是使用ϵ−贪婪法,而不是贪婪法。同时SARSA会同时更新状态S和动作A,而Q-Learning只会更新当前状态S。

values_ = q_value[next_state[0], next_state[1], :]
        next_action = np.random.choice([action_ for action_, value_ in enumerate(values_) if value_ == np.max(values_)])

        q_value[state[0], state[1], action] += \
            ALPHA * (REWARD + q_value[next_state[0], next_state[1], next_action] -
                     q_value[state[0], state[1], action])
        state = next_state

跑完完整的代码,大家可以很容易得到这个问题的最优解,进而得到在每个格子里的最优贪婪策略。

5. SARSA vs Q-Learning

现在SARSA和Q-Learning算法我们都讲完了,那么作为时序差分控制算法的两种经典方法吗,他们都有说明特点,各自适用于什么样的场景呢?

Q-Learning直接学习的是最优策略,而SARSA在学习最优策略的同时还在做探索。这导致我们在学习最优策略的时候,如果用SARSA,为了保证收敛,需要制定一个策略,使ϵ−贪婪法的超参数ϵ在迭代的过程中逐渐变小。Q-Learning没有这个烦恼。

另外一个就是Q-Learning直接学习最优策略,但是最优策略会依赖于训练中产生的一系列数据,所以受样本数据的影响较大,因此受到训练数据方差的影响很大,甚至会影响Q函数的收敛。Q-Learning的深度强化学习版Deep Q-Learning(DQN)也有这个问题。

在学习过程中,SARSA在收敛的过程中鼓励探索,这样学习过程会比较平滑,不至于过于激进,导致出现像Q-Learning可能遇到一些特殊的最优“陷阱”。比如经典的强化学习问题"Cliff Walk"。

在实际应用中,如果我们是在模拟环境中训练强化学习模型,推荐使用Q-Learning,如果是在线生产环境中训练模型,则推荐使用SARSA。

6. Q-Learning结语

对于Q-Learning和SARSA这样的时序差分算法,对于小型的强化学习问题是非常灵活有效的,但是在大数据时代,异常复杂的状态和可选动作,使Q-Learning和SARSA要维护的Q表异常的大,甚至远远超出内存,这限制了时序差分算法的应用场景。在深度学习兴起后,基于深度学习的强化学习开始占主导地位,因此从下一篇开始我们开始讨论深度强化学习的建模思路。

你可能感兴趣的:(强化学习基础)