Google colab安装环境

import torch
print(torch.__version__)
print(torch.cuda.is_available())

第一步先检查cuda是否能用

!unzip /content/GraphDTA-master.zip

第二步:解压我的文件

!wget -c https://repo.anaconda.com/miniconda/Miniconda3-py37_4.9.2-Linux-x86_64.sh
!chmod +x Miniconda3-py37_4.9.2-Linux-x86_64.sh
!time bash ./Miniconda3-py37_4.9.2-Linux-x86_64.sh -b -f -p /usr/local
!time conda install -q -y -c conda-forge rdkit
 
import sys
sys.path.append('/usr/local/lib/python3.7/site-packages/')

第三步:安装Miniconda,和rdkit

!conda install scipy
!conda install nexworkx

第四步:安装一些必要的包

!pip install torch-geometric \
  torch-sparse==latest+cu101 \
  torch-scatter==latest+cu101 \
  torch-cluster==latest+cu101 \
  -f https://pytorch-geometric.com/whl/torch-1.4.0.html

第五步:安装torch-geometric一些包

!pip install torch===1.4.0 torchvision===0.5.0 -f https://download.pytorch.org/whl/torch_stable.html

第六步:重新安装torch

第七步:把云盘的文件上传到colab

from google.colab import drive
drive.mount("/content/drive",force_remount=True)

第八步:使用tensorboard查看可视化

!pip install tensorboardX
%load_ext tensorboard 
%tensorboard --logdir=/content/drive/MyDrive/HpyerAttentionDTI-main/

你可能感兴趣的:(pytorch,深度学习,神经网络,服务器)