Keras 报错When using data tensors as input to a model, you should specify the steps_per_epoch argument

报错解决:valueError: When using data tensors as input to a model, you should specify the steps_per_epoch argument.


Keras小白开始入手深度学习的时候,使用Sequence()建模的很舒服,突然有一天要使用到Model()的时候,就开始各种报错。

from keras.models import Sequential
from keras.layers import Dense, Activation

...

model = Sequential([
    Dense(32, input_shape=(784,)),
    Dense(10),
    Activation('softmax'),
])
history = model.fit(data_x_train, data_y_train, epoch=epoch, 
					batch_size=batch_size, 
					validation_data=(data_x_val, data_y_val),
					callbacks=callbacks, verbose=1, shuffle=True)

等到了使用Model()来建模的时候,需要指定input:

from keras.models import Sequential, Model
from keras.layers import Dense, Activation, Input

...

input1 = Input(batch_shape=(None, 28, 28), dtype=tf.float32)
des1 = Dense(32)(input1)
des2 = Dense(10)(des1)
y = Activation('softmax')(des2)

model = Model(inputs=input1, outputs=y)
history = model.fit(data_x_train, data_y_train, epoch=epoch, 
					batch_size=batch_size, 
					validation_data=(data_x_val, data_y_val),
					callbacks=callbacks, verbose=1, shuffle=True)

到开始fit的时候就开始报错

ValueError: When using data tensors as input to a model, you should specify the steps_per_epoch argument.

真的是找遍各种百度都解决不了的问题,我看Keras的教程中也有使用Model()建模然后使用batch_size训练的,百思不得其解。最后用Sequence蒙混过关,直到过了半年又得改成Model,我才发现:
Keras 报错When using data tensors as input to a model, you should specify the steps_per_epoch argument_第1张图片
怪不得说是tensor as input,我这里用了tf.float32,那可不就是变成tensor data了嘛,解决方法:

import numpy as np
from keras.models import Sequential, Model
from keras.layers import Dense, Activation, Input

...

input1 = Input(batch_shape=(None, 28, 28), dtype=np.float32)
des1 = Dense(32)(input1)
des2 = Dense(10)(des1)
y = Activation('softmax')(des2)

把tf改成np就可以解决问题

需要注意的是,只要在代码中出现了数据的reshape用到了tf,那么数据就变成了tensor data格式,例如

#data_x_train.shape = (256, 28)
tf.reshape(data_x_train, (256, 28, 1), name=tf.float32) 
tf.reshape(data_x_train, (256, 28, 1), name=np.float32) 

上述的两种写法都会使得数据从array或dataFrame或list变成tensor,所以为了避免使用steps_per_epoch(好多时候有问题都不知道怎么改,反正我是不喜欢用这个),可以用numpy的reshape方法来修改数据的维度:

# type(data_x_train) = DataFrame
data_x_train = np.array(data_x_train).reshape(256, 28, 1) 

之前有看到博主说删掉验证集可以解决这个问题,但我那时候也没成功,可能就是因为reshape的时候用了tf.float32

裂开




                  ——2021.2.25 随笔

你可能感兴趣的:(tensorflow,Python,深度学习,深度学习,tensorflow,numpy)