1.下载
https://software.intel.com/en-us/mkl
链接:https://pan.baidu.com/s/1ysHRNqGOhL72YC7KZXU_uA 密码:8ivh
最新版下载方法请自行研究。
文件名字类似 l_mkl_2017.3.196.tgz
2.安装
1)解压至任意目录(安装后可删除)
2)# ./install.sh
默认安装至 /opt/, 可配置安装路径。
3)在 /etc/ld.so.conf.d 下创建名为 intel-mkl.conf 的文件,内容为
/opt/intel/mkl/lib/intel64
/opt/intel/lib/intel64
然后执行
# ldconfig -v
4) 执行
$ /opt/intel/mkl/bin/mklvars.sh intel64 mod
见:https://software.intel.com/en-us/mkl-linux-developer-guide-scripts-to-set-environment-variables
3.使用
以编译官方文档上的 dgemm_example.c 为例
#define min(x,y) (((x) < (y)) ? (x) : (y))
#include
#include
#include "mkl.h"
int main()
{
double *A, *B, *C;
int m, n, p, i, j;
double alpha, beta;
printf ("\n This example computes real matrix C=alpha*A*B+beta*C using \n"
" Intel(R) MKL function dgemm, where A, B, and C are matrices and \n"
" alpha and beta are double precision scalars\n\n");
m = 2000, p = 200, n = 1000;
printf (" Initializing data for matrix multiplication C=A*B for matrix \n"
" A(%ix%i) and matrix B(%ix%i)\n\n", m, p, p, n);
alpha = 1.0; beta = 0.0;
printf (" Allocating memory for matrices aligned on 64-byte boundary for better \n"
" performance \n\n");
A = (double *)mkl_malloc( m*p*sizeof( double ), 64 );
B = (double *)mkl_malloc( p*n*sizeof( double ), 64 );
C = (double *)mkl_malloc( m*n*sizeof( double ), 64 );
if (A == NULL || B == NULL || C == NULL) {
printf( "\n ERROR: Can't allocate memory for matrices. Aborting... \n\n");
mkl_free(A);
mkl_free(B);
mkl_free(C);
return 1;
}
printf (" Intializing matrix data \n\n");
for (i = 0; i < (m*p); i++) {
A[i] = (double)(i+1);
}
for (i = 0; i < (p*n); i++) {
B[i] = (double)(-i-1);
}
for (i = 0; i < (m*n); i++) {
C[i] = 0.0;
}
printf (" Computing matrix product using Intel(R) MKL dgemm function via CBLAS interface \n\n");
cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans,
m, n, p, alpha, A, p, B, n, beta, C, n);
printf ("\n Computations completed.\n\n");
printf (" Top left corner of matrix A: \n");
for (i=0; i
}
printf ("\n");
}
printf ("\n Top left corner of matrix B: \n");
for (i=0; i
}
printf ("\n");
}
printf ("\n Top left corner of matrix C: \n");
for (i=0; i
}
printf ("\n");
}
printf ("\n Deallocating memory \n\n");
mkl_free(A);
mkl_free(B);
mkl_free(C);
printf (" Example completed. \n\n");
return 0;
}
(代码下载地址:https://software.intel.com/en-us/product-code-samples)
编译命令为:
$ gcc -I/opt/intel/mkl/include dgemm_example.c -lmkl_core -lmkl_intel_lp64 -lmkl_intel_thread -liomp5 -lpthread -lm -L/opt/intel/mkl/lib/intel64 -L/opt/intel/lib/intel64
或者
$ gcc -I/opt/intel/mkl/include dgemm_example.c -lmkl_rt -L/opt/intel/mkl/lib/intel64 -L/opt/intel/lib/intel64
再或者
$ . /opt/intel/bin/compilervars.sh intel64
$ gcc dgemm_example.c -lmkl_rt
(此方法可行是因为前一个命令设置了环境变量 CPATH,LD_LIBRARY_PATH,LIBRARY_PATH,致使编译器可以找到所需的头文件和库文件。编译C时头文件查找 C_INCLUDE_PATH 中包含目录,C++ 查找 CPLUS_INCLUDE_PATH,C和C++都查找 CPATH)
链接MKL的库的方法见:https://software.intel.com/en-us/mkl-linux-developer-guide-linking-your-application-with-the-intel-math-kernel-library
(学习文档:https://software.intel.com/en-us/get-started-with-mkl-for-linux ,https://software.intel.com/en-us/mkl-linux-developer-guide)
后记:
Intel的MPI库的安装方法与MKL相同,执行 compilervars.sh 之后即可编译使用了MPI库的文件。
gmres_test.c
/* Example to show how to use Intel's FGMRES with preconditioner to solve the linear system Ax=b in MPI.
* Based on Intel's example: solverc/source/fgmres_full_funct_c.c
* For CS51501 HW3 Part b
*
* Please read Intel Reference Manual, Chapter 6 Sparse Solve Routine, FGMRES Interface Description for the detail information.
*/
#include
#include "mkl.h"
#include "mpi.h"
#define MASTER 0 // taskid of first task
#define RESTART 500
#define TOL 0.00000001
#define MAXIT 1000
void mpi_dgemv(const MKL_INT m, const MKL_INT local_m, const double *A, const double *u, double *v, double *local_u, double *local_v, int taskid, MPI_Comm comm);
void mpi_preconditioner_solver(const MKL_INT m, const MKL_INT local_m, const double *local_M, const double *u, double *v, double *local_u, int taskid, MPI_Comm comm);
int main(int argc, char *argv[])
{
int taskid; // a task identifier
int numtasks; // number of tasks in partition
MPI_Comm comm;
int m; // size of the matrix
int local_m; // rows of matrix A sent to each worker
double *A, *b, *exact_x, *x;
double *temp_1, *temp_2;
double *local_A, *local_v, *local_u;
double *local_M; // M is the preconditioner in this example, which is the diagonal element of A;
int i, j, k;
MPI_Init(&argc, &argv);
comm = MPI_COMM_WORLD;
MPI_Comm_rank(comm, &taskid);
MPI_Comm_size(comm, &numtasks);
if (taskid == MASTER) { // initilization: A and b
/* start modification 1: read A and b from mtx files in node 0 */
m = 64; // size of the matrix
A = malloc(sizeof(double) * (m * m));
// !!! A is in col-major
for (j = 0; j < m; j++)
for (i = 0; i < m; i++) {
if (i == j)
*(A + j * m + i) = m * 100.0;
else
*(A + j * m + i) = i + 1.0;
}
exact_x = malloc(sizeof(double) * m);
for (i = 0; i < m; i++)
*(exact_x + i) = 1.0;
b = malloc(sizeof(double) * m);
// b=A*ones(n,1)
cblas_dgemv(CblasColMajor, CblasNoTrans, m, m, 1.0, A, m, exact_x, 1, 0.0, b, 1);
/* end modification 1 */
}
MPI_Bcast(&m, 1, MPI_INT, MASTER, comm); // send m from node MASTER to all other nodes.
local_m = m / numtasks;
local_A = malloc(sizeof(double) * (local_m * m));
local_u = malloc(sizeof(double) * (local_m));
local_v = malloc(sizeof(double) * m);
// partition A and send A_i to local_A on node i
MPI_Scatter(A, local_m * m, MPI_DOUBLE, local_A, local_m * m, MPI_DOUBLE, MASTER, comm);
if (taskid == MASTER) {
free(A);
free(exact_x);
// do not free b, it wil be used for GMRES
}
/* start modification 2: generate preconditioner M
* In this example, TA choose the diagonal elements of A as the preconditioner.
* In HW3 part b, you should generate L and U here.
*/
local_M = malloc(sizeof(double) * local_m);
for (i = 0; i < local_m; i++)
*(local_M + i) = *(local_A + taskid * local_m + i * m + i);
/* end modification 2 */
/*---------------------------------------------------------------------------
* GMRES: Allocate storage for the ?par parameters and the solution vectors
*---------------------------------------------------------------------------*/
MKL_INT RCI_request;
int RCI_flag;
double dvar;
int flag = 0;
MKL_INT ipar[128]; //specifies the integer set of data for the RCI FGMRES computations
double dpar[128]; // specifies the double precision set of data
double *tmp; //used to supply the double precision temporary space for theRCI FGMRES computations, specifically:
double *computed_solution;
double *residual;
double *f;
MKL_INT itercount, ierr = 0;;
MKL_INT ivar;
double b_2norm;
char cvar = 'N';
MKL_INT incx = 1;
if (taskid == MASTER) {
ipar[14] = RESTART; // restart iteration number
int n_tmp = (2 * ipar[14] + 1) * m + ipar[14] * (ipar[14] + 9) / 2 + 1;
tmp = (double *) malloc(sizeof(double) * n_tmp);
computed_solution = (double *) malloc(sizeof(double) * m);
residual = (double *) malloc(sizeof(double) * m);
f = (double *) malloc(sizeof(double) * m);
ivar = m;
/*---------------------------------------------------------------------------
* Initialize the initial guess
*---------------------------------------------------------------------------*/
for (i = 0; i < m; i++) {
computed_solution[i] = 0.5;
}
b_2norm = cblas_dnrm2(ivar, b, incx);
// printf("b_2norm=%f\n",b_2norm);
/*---------------------------------------------------------------------------
* Initialize the solver
*---------------------------------------------------------------------------*/
dfgmres_init(&ivar, computed_solution, b, &RCI_request, ipar, dpar, tmp);
RCI_flag = RCI_request;
}
MPI_Bcast(&RCI_flag, 1, MPI_INT, MASTER, comm);
if (RCI_flag != 0)
goto FAILED;
if (taskid == MASTER) {
/*---------------------------------------------------------------------------
* GMRES: Set the desired parameters:
*---------------------------------------------------------------------------*/
ipar[14] = RESTART; // restart iteration number
ipar[7] = 1; //do the stopping test
ipar[10] = 1; // use preconditioner
dpar[0] = TOL;
/*---------------------------------------------------------------------------
* Check the correctness and consistency of the newly set parameters
*---------------------------------------------------------------------------*/
dfgmres_check(&ivar, computed_solution, b, &RCI_request, ipar, dpar, tmp);
RCI_flag = RCI_request;
}
MPI_Bcast(&RCI_flag, 1, MPI_INT, MASTER, comm);
if (RCI_flag != 0)
goto FAILED;
if (taskid == MASTER) {
/*---------------------------------------------------------------------------
* Print the info about the RCI FGMRES method
*---------------------------------------------------------------------------*/
printf("Some info about the current run of RCI FGMRES method:\n\n");
if (ipar[7]) {
printf("As ipar[7]=%d, the automatic test for the maximal number of ", ipar[7]);
printf("iterations will be\nperformed\n");
} else {
printf("As ipar[7]=%d, the automatic test for the maximal number of ", ipar[7]);
printf("iterations will be\nskipped\n");
}
printf("+++\n");
if (ipar[8]) {
printf("As ipar[8]=%d, the automatic residual test will be performed\n", ipar[8]);
} else {
printf("As ipar[8]=%d, the automatic residual test will be skipped\n", ipar[8]);
}
printf("+++\n");
if (ipar[9]) {
printf("As ipar[9]=%d, the user-defined stopping test will be ", ipar[9]);
printf("requested via\nRCI_request=2\n");
} else {
printf("As ipar[9]=%d, the user-defined stopping test will not be ", ipar[9]);
printf("requested, thus,\nRCI_request will not take the value 2\n");
}
printf("+++\n");
if (ipar[10]) {
printf("As ipar[10]=%d, the Preconditioned FGMRES iterations will be ", ipar[10]);
printf("performed, thus,\nthe preconditioner action will be requested via ");
printf("RCI_request=3\n");
} else {
printf("As ipar[10]=%d, the Preconditioned FGMRES iterations will not ", ipar[10]);
printf("be performed,\nthus, RCI_request will not take the value 3\n");
}
printf("+++\n");
if (ipar[11]) {
printf("As ipar[11]=%d, the automatic test for the norm of the next ", ipar[11]);
printf("generated vector is\nnot equal to zero up to rounding and ");
printf("computational errors will be performed,\nthus, RCI_request will not ");
printf("take the value 4\n");
} else {
printf("As ipar[11]=%d, the automatic test for the norm of the next ", ipar[11]);
printf("generated vector is\nnot equal to zero up to rounding and ");
printf("computational errors will be skipped,\nthus, the user-defined test ");
printf("will be requested via RCI_request=4\n");
}
printf("+++\n\n");
}
/*---------------------------------------------------------------------------
* Compute the solution by RCI (P)FGMRES solver with preconditioning
* Reverse Communication starts here
*---------------------------------------------------------------------------*/
ONE:
if (taskid == MASTER) {
dfgmres(&ivar, computed_solution, b, &RCI_request, ipar, dpar, tmp);
RCI_flag = RCI_request;
}
MPI_Bcast(&RCI_flag, 1, MPI_INT, MASTER, comm); // send RCI_request from node MASTER to all other nodes.
/*---------------------------------------------------------------------------
* If RCI_request=0, then the solution was found with the required precision
*---------------------------------------------------------------------------*/
if (RCI_flag == 0)
goto COMPLETE;
/*---------------------------------------------------------------------------
* If RCI_request=1, then compute the vector A*tmp[ipar[21]-1]
* and put the result in vector tmp[ipar[22]-1]
*---------------------------------------------------------------------------
* NOTE that ipar[21] and ipar[22] contain FORTRAN style addresses,
* therefore, in C code it is required to subtract 1 from them to get C style
* addresses
*---------------------------------------------------------------------------*/
if (RCI_flag == 1) {
if (taskid == MASTER) {
temp_1 = &tmp[ipar[21] - 1];
temp_2 = &tmp[ipar[22] - 1];
}
mpi_dgemv(m, local_m, local_A, temp_1, temp_2, local_u, local_v, taskid, comm);
goto ONE;
}
/*---------------------------------------------------------------------------
* If RCI_request=2, then do the user-defined stopping test
* The residual stopping test for the computed solution is performed here
*---------------------------------------------------------------------------
*/
if (RCI_flag == 2) {
/* Request to the dfgmres_get routine to put the solution into b[N] via ipar[12]
--------------------------------------------------------------------------------
WARNING: beware that the call to dfgmres_get routine with ipar[12]=0 at this
stage may destroy the convergence of the FGMRES method, therefore, only
advanced users should exploit this option with care */
if (taskid == MASTER) {
ipar[12] = 1;
/* Get the current FGMRES solution in the vector f */
dfgmres_get(&ivar, computed_solution, f, &RCI_request, ipar, dpar, tmp, &itercount);
temp_1 = f;
temp_2 = residual;
}
/* Compute the current true residual via mpi mat_vec multiplication */
mpi_dgemv(m, local_m, local_A, temp_1, temp_2, local_u, local_v, taskid, comm);
if (taskid == MASTER) {
dvar = -1.0E0;
cblas_daxpy(ivar, dvar, b, incx, residual, incx);
dvar = cblas_dnrm2(ivar, residual, incx);
printf("iteration %d, relative residual:%e\n", itercount, dvar);
}
MPI_Bcast(&dvar, 1, MPI_DOUBLE, MASTER, comm);
if (dvar < TOL) {
goto COMPLETE;
} else
goto ONE;
}
/*---------------------------------------------------------------------------
* If RCI_request=3, then apply the preconditioner on the vector
* tmp[ipar[21]-1] and put the result in vector tmp[ipar[22]-1]
*---------------------------------------------------------------------------
* NOTE that ipar[21] and ipar[22] contain FORTRAN style addresses,
* therefore, in C code it is required to subtract 1 from them to get C style
* addresses
*---------------------------------------------------------------------------*/
if (RCI_flag == 3) {
if (taskid == MASTER) {
temp_1 = &tmp[ipar[21] - 1];
temp_2 = &tmp[ipar[22] - 1];
}
/* start modification 3: solve L U temp_2 = temp_1 */
mpi_preconditioner_solver(m, local_m, local_M, temp_1, temp_2, local_u, taskid, comm);
/* end modification 3 */
goto ONE;
}
/*---------------------------------------------------------------------------
* If RCI_request=4, then check if the norm of the next generated vector is
* not zero up to rounding and computational errors. The norm is contained
* in dpar[6] parameter
*---------------------------------------------------------------------------*/
if (RCI_flag == 4) {
if (taskid == MASTER)
dvar = dpar[6];
MPI_Bcast(&dvar, 1, MPI_DOUBLE, MASTER, comm);
if (dvar < 1.0E-12) {
goto COMPLETE;
} else
goto ONE;
}
/*---------------------------------------------------------------------------
* If RCI_request=anything else, then dfgmres subroutine failed
* to compute the solution vector: computed_solution[N]
*---------------------------------------------------------------------------*/
else {
goto FAILED;
}
/*---------------------------------------------------------------------------
* Reverse Communication ends here
* Get the current iteration number and the FGMRES solution (DO NOT FORGET to
* call dfgmres_get routine as computed_solution is still containing
* the initial guess!). Request to dfgmres_get to put the solution
* into vector computed_solution[N] via ipar[12]
*---------------------------------------------------------------------------*/
COMPLETE:if (taskid == MASTER) {
ipar[12] = 0;
dfgmres_get(&ivar, computed_solution, b, &RCI_request, ipar, dpar, tmp, &itercount);
/*---------------------------------------------------------------------------
* Print solution vector: computed_solution[N] and the number of iterations: itercount
*---------------------------------------------------------------------------*/
printf("The system has been solved in %d iterations \n", itercount);
printf("The following solution has been obtained (first 4 elements): \n");
for (i = 0; i < 4; i++) {
printf("computed_solution[%d]=", i);
printf("%e\n", computed_solution[i]);
}
/*-------------------------------------------------------------------------*/
/* Release internal MKL memory that might be used for computations */
/* NOTE: It is important to call the routine below to avoid memory leaks */
/* unless you disable MKL Memory Manager */
/*-------------------------------------------------------------------------*/
MKL_Free_Buffers();
temp_1 = computed_solution;
temp_2 = residual;
}
// compute the relative residual
mpi_dgemv(m, local_m, local_A, temp_1, temp_2, local_u, local_v, taskid, comm);
if (taskid == MASTER) {
dvar = -1.0E0;
cblas_daxpy(ivar, dvar, b, incx, residual, incx);
dvar = cblas_dnrm2(ivar, residual, incx);
printf("relative residual:%e\n", dvar / b_2norm);
if (itercount < MAXIT && dvar < TOL)
flag = 0; //success
else
flag = 1; //fail
}
MPI_Bcast(&flag, 1, MPI_INT, MASTER, comm);
free(local_A);
free(local_M);
free(local_u);
free(local_v);
if (taskid == MASTER) {
free(tmp);
free(b);
free(computed_solution);
free(residual);
}
if (flag == 0) {
MPI_Finalize();
return 0;
} else {
MPI_Finalize();
return 1;
}
/* Release internal MKL memory that might be used for computations */
/* NOTE: It is important to call the routine below to avoid memory leaks */
/* unless you disable MKL Memory Manager */
/*-------------------------------------------------------------------------*/
FAILED:
if (taskid == MASTER) {
printf("\nThis example FAILED as the solver has returned the ERROR code %d", RCI_request);
MKL_Free_Buffers();
}
free(local_A);
free(local_M);
free(local_u);
free(local_v);
if (taskid == MASTER) {
free(tmp);
free(b);
free(computed_solution);
free(residual);
}
MPI_Finalize();
return 1;
}
void mpi_dgemv(const MKL_INT m, const MKL_INT local_m, const double *local_A, const double *u, double *v, double *local_u, double *local_v, int taskid, MPI_Comm comm)
{
// compute v=A*u in MPI
CBLAS_LAYOUT layout = CblasColMajor; //col major
CBLAS_TRANSPOSE trans = CblasNoTrans; // no transfer
MPI_Scatter(u, local_m, MPI_DOUBLE, local_u, local_m, MPI_DOUBLE, MASTER, comm); // send u_i from node MASTER to all other nodes.
// printf("scatter finish at taskid=%d\n",taskid);
// compute A_i
cblas_dgemv(layout, trans, m, local_m, 1.0, local_A, m, local_u, 1, 0.0, local_v, 1);
// Apply a reduction operation on all nodes and place the result in vector v.
MPI_Reduce(local_v, v, m, MPI_DOUBLE, MPI_SUM, MASTER, comm);
}
void mpi_preconditioner_solver(const MKL_INT m, const MKL_INT local_m, const double *local_M, const double *u, double *v, double *local_u, int taskid, MPI_Comm comm)
{
int i = 0;
// printf("begin taskid=%d\n",taskid);
MPI_Scatter(u, local_m, MPI_DOUBLE, local_u, local_m, MPI_DOUBLE, MASTER, comm); // send u_i from node MASTER to all other nodes.
// printf("taskid=%d\n",taskid);
//compute Mi^(-1)*y_i at each node
for (i = 0; i < local_m; i++)
*(local_u + i) /= *(local_M + i);
// Apply a gather operation on all nodes
MPI_Gather(local_u, local_m, MPI_DOUBLE, v, local_m, MPI_DOUBLE, MASTER, comm);
}
$ . /opt/intel/bin/compilervars.sh intel64
$ mpicc gmres_test.c -o gmres_test -lmkl_rt
---------------------
作者:chenjun15
来源:CSDN
原文:https://blog.csdn.net/chenjun15/article/details/75041932
版权声明:本文为博主原创文章,转载请附上博文链接!