利用PaddlePaddle实现卷积神经网络

案例1——简单的黑白边界检测

使用Conv2D算子完成一个图像边界检测的任务。图像左边为光亮部分,右边为黑暗部分,需要检测出光亮跟黑暗的分界处。

import inline as inline
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import paddle
from paddle.nn import Conv2D
from paddle.nn.initializer import Assign


# 创建初始化权重参数w
w = np.array([1, 0, -1], dtype='float32')
# 将权重参数调整成维度为[cout, cin, kh, kw]的四维张量
w = w.reshape([1, 1, 1, 3])
# 创建卷积算子,设置输出通道数,卷积核大小,和初始化权重参数
# kernel_size = [1, 3]表示kh = 1, kw=3
# 创建卷积算子的时候,通过参数属性weight_attr指定参数初始化方式
# 这里的初始化方式时,从numpy.ndarray初始化卷积参数
conv = Conv2D(in_channels=1, out_channels=1, kernel_size=[1, 3],
       weight_attr=paddle.ParamAttr(
          initializer=Assign(value=w)))

# 创建输入图片,图片左边的像素点取值为1,右边的像素点取值为0
img = np.ones([50,50], dtype='float32')
img[:, 30:] = 0.
# 将图片形状调整为[N, C, H, W]的形式
x = img.reshape([1,1,50,50])
# 将numpy.ndarray转化成paddle中的tensor
x = paddle.to_tensor(x)
# 使用卷积算子作用在输入图片上
y = conv(x)
# 将输出tensor转化为numpy.ndarray
out = y.numpy()
f = plt.subplot(121)
f.set_title('input image', fontsize=15)
plt.imshow(img, cmap='gray')
f = plt.subplot(122)
f.set_title('output featuremap', fontsize=15)
# 卷积算子Conv2D输出数据形状为[N, C, H, W]形式
# 此处N, C=1,输出数据形状为[1, 1, H, W],是4维数组
# 但是画图函数plt.imshow画灰度图时,只接受2维数组
# 通过numpy.squeeze函数将大小为1的维度消除
plt.imshow(out.squeeze(), cmap='gray')
plt.show()
# 查看卷积层的权重参数名字和数值
print(conv.weight)
# 参看卷积层的偏置参数名字和数值
print(conv.bias)

结果:

利用PaddlePaddle实现卷积神经网络_第1张图片

案例2——图像中物体边缘检测

使用卷积网络检测图片明暗分界处 

import matplotlib.pyplot as plt
from PIL import Image
import numpy as np
import paddle
from paddle.nn import Conv2D
from paddle.nn.initializer import Assign

img = Image.open('D:/work/jiaofu.jpg')

# 设置卷积核参数
w = np.array([[-1, -1, -1], [-1, 8, -1], [-1, -1, -1]], dtype='float32') / 2
w = w.reshape([1, 1, 3, 3])
# 由于输入通道数是3,将卷积核的形状从[1,1,3,3]调整为[1,3,3,3]
w = np.repeat(w, 3, axis=1)
# 创建卷积算子,输出通道数为1,卷积核大小为3x3,
# 并使用上面的设置好的数值作为卷积核权重的初始化参数
conv = Conv2D(in_channels=3, out_channels=1, kernel_size=[3, 3],
              weight_attr=paddle.ParamAttr(
                  initializer=Assign(value=w)))

# 将读入的图片转化为float32类型的numpy.ndarray
x = np.array(img).astype('float32')
# 图片读入成ndarry时,形状是[H, W, 3],
# 将通道这一维度调整到最前面
x = np.transpose(x, (2, 0, 1))
# 将数据形状调整为[N, C, H, W]格式
x = x.reshape(1, 3, img.height, img.width)
x = paddle.to_tensor(x)
y = conv(x)
out = y.numpy()
plt.figure(figsize=(20, 10))
f = plt.subplot(121)
f.set_title('input image', fontsize=15)
plt.imshow(img)
f = plt.subplot(122)
f.set_title('output feature map', fontsize=15)
plt.imshow(out.squeeze(), cmap='gray')
plt.show()

使用合适的卷积核(3*3卷积核的中间值是8,周围一圈的值是8个-1)对其进行操作,用来检测物体的外形轮廓

结果:利用PaddlePaddle实现卷积神经网络_第2张图片

案例3——图像均值模糊

用当前像素跟它邻域内的像素取平均,这样可以使图像上噪声比较大的点变得更平滑 

import paddle
import matplotlib.pyplot as plt
from PIL import Image
import numpy as np
from paddle.nn import Conv2D
from paddle.nn.initializer import Assign
# 读入图片并转成numpy.ndarray
# 换成灰度图
img = Image.open('D:/work/jiaofu.jpg').convert('L')
img = np.array(img)

# 创建初始化参数
w = np.ones([1, 1, 8, 5], dtype = 'float32')/50
conv = Conv2D(in_channels=1, out_channels=1, kernel_size=[5, 5],
        weight_attr=paddle.ParamAttr(
         initializer=Assign(value=w)))
x = img.astype('float32')
x = x.reshape(1,1,img.shape[0], img.shape[1])
x = paddle.to_tensor(x)
y = conv(x)
out = y.numpy()

plt.figure(figsize=(20, 12))
f = plt.subplot(121)
f.set_title('input image')
plt.imshow(img, cmap='gray')

f = plt.subplot(122)
f.set_title('output feature map')
out = out.squeeze()
plt.imshow(out, cmap='gray')

plt.show()

结果:

利用PaddlePaddle实现卷积神经网络_第3张图片

 所有的案例满意效果都可以通过进行调整卷积核来进行调整

而且其还展示了sigmod函数和relu函数的图像

# ReLU和Sigmoid激活函数示意图
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.patches as patches
plt.figure(figsize=(10, 5))

# 创建数据x
x = np.arange(-10, 10, 0.1)

# 计算Sigmoid函数
s = 1.0 / (1 + np.exp(0. - x))

# 计算ReLU函数
y = np.clip(x, a_min=0., a_max=None)

#####################################
# 以下部分为画图代码
f = plt.subplot(121)
plt.plot(x, s, color='r')
currentAxis=plt.gca()
plt.text(-9.0, 0.9, r'$y=Sigmoid(x)$', fontsize=13)
currentAxis.xaxis.set_label_text('x', fontsize=15)
currentAxis.yaxis.set_label_text('y', fontsize=15)

f = plt.subplot(122)
plt.plot(x, y, color='g')
plt.text(-3.0, 9, r'$y=ReLU(x)$', fontsize=13)
currentAxis=plt.gca()
currentAxis.xaxis.set_label_text('x', fontsize=15)
currentAxis.yaxis.set_label_text('y', fontsize=15)

plt.show()

利用PaddlePaddle实现卷积神经网络_第4张图片

 其还讨论了丢弃法的问题

丢弃法

丢弃法(Dropout)是深度学习中一种常用的抑制过拟合的方法,其做法是在神经网络学习过程中,随机删除一部分神经元。训练时,随机选出一部分神经元,将其输出设置为0,这些神经元将不对外传递信号。

# dropout操作
import paddle
import numpy as np

# 设置随机数种子,这样可以保证每次运行结果一致
np.random.seed(100)
# 创建数据[N, C, H, W],一般对应卷积层的输出
data1 = np.random.rand(2, 3, 3, 3).astype('float32')
# 创建数据[N, K],一般对应全连接层的输出
data2 = np.arange(1, 13).reshape([-1, 3]).astype('float32')
# 使用dropout作用在输入数据上
x1 = paddle.to_tensor(data1)
# downgrade_in_infer模式下
drop11 = paddle.nn.Dropout(p=0.5, mode='downscale_in_infer')
droped_train11 = drop11(x1)
# 切换到eval模式。在动态图模式下,使用eval()切换到求值模式,该模式禁用了dropout。
drop11.eval()
droped_eval11 = drop11(x1)
# upscale_in_train模式下
drop12 = paddle.nn.Dropout(p=0.5, mode='upscale_in_train')
droped_train12 = drop12(x1)
# 切换到eval模式
drop12.eval()
droped_eval12 = drop12(x1)

x2 = paddle.to_tensor(data2)
drop21 = paddle.nn.Dropout(p=0.5, mode='downscale_in_infer')
droped_train21 = drop21(x2)
# 切换到eval模式
drop21.eval()
droped_eval21 = drop21(x2)
drop22 = paddle.nn.Dropout(p=0.5, mode='upscale_in_train')
droped_train22 = drop22(x2)
# 切换到eval模式
drop22.eval()
droped_eval22 = drop22(x2)

print('x1 {}, \n droped_train11 \n {}, \n droped_eval11 \n {}'.format(data1, droped_train11.numpy(),
                                                                      droped_eval11.numpy()))
print('x1 {}, \n droped_train12 \n {}, \n droped_eval12 \n {}'.format(data1, droped_train12.numpy(),
                                                                      droped_eval12.numpy()))
print('x2 {}, \n droped_train21 \n {}, \n droped_eval21 \n {}'.format(data2, droped_train21.numpy(),
                                                                      droped_eval21.numpy()))
print('x2 {}, \n droped_train22 \n {}, \n droped_eval22 \n {}'.format(data2, droped_train22.numpy(),
                                                                      droped_eval22.numpy()))

利用PaddlePaddle实现卷积神经网络_第5张图片

利用PaddlePaddle实现卷积神经网络_第6张图片 

 

你可能感兴趣的:(1024程序员节,python,numpy,机器学习)