Python 层次分析法 AHP

import logging
import time

import numpy as np
import pandas as pd

logging.basicConfig(format='%(message)s', level=logging.INFO)
LOGGER = logging.getLogger(__name__)

成对比较矩阵

该函数用于将下三角矩阵转化为成对比较矩阵

def pair_comp_array(tril):
    ''' tril: 下三角矩阵 (以列为单元)
        return: 成对比较矩阵'''
    dim = len(tril)
    # 将下三角矩阵用 0 填充成方阵
    for row in range(dim):
        size = row + 1
        assert len(tril[row]) == size, f'第 {size} 行数据不满足下三角矩阵要求'
        tril[row].extend([0 for _ in range(dim - size)])
    array = np.array(tril)
    # 以成对比较矩阵的标准设置矩阵值
    for col in range(dim):
        for row in range(col):
            array[row][col] = 1 / array[col][row]
    return array

RI 计算

当矩阵阶数大于 15 时,用于一致性检验的 RI 是不能通过查表得到的,需计算 1000 个随机成对比较矩阵的 CI 均值作为 RI

def cal_RI(dim, epochs=1000, decimals=4):
    if dim <= 15:
        return {3: 0.52, 4: 0.89, 5: 1.12, 6: 1.26, 7: 1.36, 8: 1.41, 9: 1.46,
                10: 1.49, 11: 1.52, 12: 1.54, 13: 1.56, 14: 1.58, 15: 1.59}[dim]
    else:
        mark = time.time()
        LOGGER.info(f'Calulating RI: dim = {dim}, epochs={epochs}, decimals={decimals}')
        lambda_sum = 0
        for i in range(epochs):
            array = np.eye(dim)
            # 随机构造成对比较矩阵
            for col in range(dim):
                for row in range(col):
                    array[col][row] = np.random.choice([1, 2, 3, 4, 5, 6, 7, 8, 9,
                                                        1 / 2, 1 / 3, 1 / 4, 1 / 5,
                                                        1 / 6, 1 / 7, 1 / 8, 1 / 9])
                    array[row][col] = 1 / array[col][row]
            # 求取最大特征值
            solution, weights = np.linalg.eig(array)
            lambda_sum += np.real(solution.max())
        # 最大特征值的均值
        lambda_ = lambda_sum / 1000
        RI = round((lambda_ - dim) / (dim - 1), decimals)
        LOGGER.info(f'RI = {RI}, time = {round(time.time() - mark, 2)}s')
        return RI

特征向量

求解成对比较矩阵的特征向量有 算术平均法、几何平均法、特征值法,求解过程中会输出比较结果,并返回 3 个结果的均值、一致性指标 CI:

CI = \frac{\lambda-n}{n-1}

其中,n 为成对比较矩阵的阶数,λ 为成对比较矩阵的最大特征根

def solve_weight(array):
    ''' 求解特征方程
        return: w, CI'''
    array = array.copy()
    dim = array.shape[0]
    weight_list = []
    # 算术平均法
    weight = (array / array.sum(axis=0)).mean(axis=1, keepdims=True)
    weight_list.append(weight)
    # 几何平均法
    weight = np.prod(array, axis=1, keepdims=True) ** (1 / dim)
    weight /= weight.sum()
    weight_list.append(weight)
    # 特征值法
    solution, weights = np.linalg.eig(array)
    index = solution.argmax()
    lambda_ = np.real(solution[index])
    weight = np.real(weights[:, index])
    weight /= weight.sum()
    weight_list.append(weight[:, None])
    # 输出对比结果
    weight = np.concatenate(weight_list, axis=1)
    LOGGER.info(pd.DataFrame(weight, columns=['算术平均', '几何平均', '特征值']))
    LOGGER.info('')
    weight = weight.mean(axis=1)
    # 计算 CI
    CI = (lambda_ - dim) / (dim - 1)
    return weight, CI

一致性检验

一致性比率 CR < 0.1 时,则成对比较矩阵具有满意一致性:

CR=\frac{CI}{RI}

def consistency_check(CI, dim, single=True, decimals=5):
    ''' 一致性检验
        single: 是否为单排序一致性检验
        decimals: 数值精度
        CI = (λ - n) / (n - 1)
        CR = CI / RI
        Success: CR < 0.1'''
    if dim >= 3:
        RI = cal_RI(dim)
        CR = round(CI / RI, decimals)
        message = f'CI = {round(CI, decimals)}, RI = {RI}, CR = {CR}'
        success = CR < 0.1
    else:
        message = 'dim <= 2'
        success = True
    # 依照不同模式输出字符串
    head = 'Single sort consistency check' if single else 'Total sorting consistency check'
    LOGGER.info(f'{head}\nMessage: {message}\n')
    assert success, f'{head}: CR >= 0.1'

准则层特征向量

准则层只有一个成对比较矩阵,其特征向量即准则层的特征向量,需进行单排序一致性检验

def solve_criterion_feature(array):
    ''' 求解准则层特征向量'''
    feature, CI = solve_weight(array)
    dim = feature.size
    # dim: 准则层指标数
    consistency_check(CI, dim, single=True)
    return feature

决策层权值矩阵

决策层的成对比较矩阵数量与准则层指标数相等,每个成对比较矩阵的特征向量按列拼接即得到决策层的权值矩阵

记 F_i 为准则层特征向量,总排序一致性检验使用的 CI 为: 

\sum F_i \cdot CI_i

def solve_decision_weight(decision_array, criterion_feature):
    ''' 求解决策层权值矩阵
        decisions_array: 决策层成对比较矩阵序列
        criterion_feature: 准则层权向量'''
    weight_list = []
    CI_list = []
    # 分别求解决策层的各个权值向量
    for array in decision_array:
        weight, CI = solve_weight(array)
        weight_list.append(weight)
        CI_list.append(CI)
    # 拼接得到决策层权值矩阵
    decision_weight = np.stack(weight_list, axis=1)
    CI = (np.array(CI_list) * criterion_feature).sum()
    dim = decision_weight.shape[0]
    # dim: 决策层方案数
    consistency_check(CI, dim, single=False)
    return decision_weight

求解示例

A = pair_comp_array([[1],
                     [2, 1],
                     [1 / 4, 1 / 7, 1],
                     [1 / 3, 1 / 5, 2, 1],
                     [1 / 3, 1 / 5, 3, 1, 1]])
B_1 = pair_comp_array([[1],
                       [1 / 2, 1],
                       [1 / 5, 1 / 2, 1]])
B_2 = pair_comp_array([[1],
                       [3, 1],
                       [8, 3, 1]])
B_3 = pair_comp_array([[1],
                       [1, 1],
                       [1 / 3, 1 / 3, 1]])
B_4 = pair_comp_array([[1],
                       [1 / 3, 1],
                       [1 / 4, 1, 1]])
B_5 = pair_comp_array([[1],
                       [1, 1],
                       [4, 4, 1]])

# 准则层特征向量: [5,]
A_feature = solve_criterion_feature(A)
# 决策层权值矩阵: [3, 5]
B_weight = solve_decision_weight([B_1, B_2, B_3, B_4, B_5], A_feature)
# 组合权向量: [3, 5] × [5,] -> [3,]
print(B_weight @ A_feature)

你可能感兴趣的:(数学建模,python,数据分析,矩阵)