sklearn.model_selection中train_test_split()函数

train_test_split()是sklearn.model_selection中的分离器函数,用于将数组或矩阵划分为训练集和测试集,函数样式为:
X_train, X_test, y_train, y_test = train_test_split(train_data, train_target, test_size, random_state,shuffle)

参数解释:
  • train_data:待划分的样本数据
  • train_target:待划分的对应样本数据的样本标签
  • test_size:1)浮点数,在0 ~ 1之间,表示样本占比(test_size = 0.3,则样本数据中有30%的数据作为测试数据,记入X_test,其余70%数据记入X_train,同时适用于样本标签);2)整数,表示样本数据中有多少数据记入X_test中,其余数据记入X_train
  • random_state:随机数种子,种子不同,每次采的样本不一样;种子相同,采的样本不变(random_state不取,采样数据不同,但random_state等于某个值,采样数据相同,取0的时候也相同,这可以自己编程尝试下,不过想改变数值也可以设置random_state = int(time.time()))
  • shuffle:洗牌模式,1)shuffle = False,不打乱样本数据顺序;2)shuffle = True,打乱样本数据顺序
Python代码:
>>> import numpy as np
>>> from sklearn.model_selection import train_test_split
>>> X, y = np.arange(30).reshape((10, 3)), range(10)
>>> X_train, X_test ,y_train, y_test= train_test_split(X, y,test_size=0.3, rando
m_state = 20, shuffle=True)
>>> X_train
array([[15, 16, 17],
       [ 0,  1,  2],
       [ 6,  7,  8],
       [18, 19, 20],
       [27, 28, 29],
       [12, 13, 14],
       [ 9, 10, 11]])
>>> X_test
array([[21, 22, 23],
       [ 3,  4,  5],
       [24, 25, 26]])
>>> y_train
[5, 0, 2, 6, 9, 4, 3]
>>> y_test
[7, 1, 8]

你可能感兴趣的:(sklearn,sklearn,model_selection)