【PaddleNLP】使用预训练模型代码解读(Stack,Pad,Tuple、utils.py,偏函数)

总结

utils.py里面的函数
都是封装了一下,
感觉没必要,

不清楚变量的shape和值就一个一个print输出
多看官方文档和里面的例子

【参考:模型训练、评估与推理-使用文档-PaddlePaddle深度学习平台】


项目一

本项目来源于:【参考:『NLP经典项目集』02:使用预训练模型ERNIE优化情感分析 - 飞桨AI Studio】

Stack,Pad,Tuple

  • 【参考:使用PaddleNLP进行恶意网页识别(一) - 飞桨AI Studio】
  • 【参考:PaddleNLP/data.md at develop · PaddlePaddle/PaddleNLP】

注意,在早前的PaddleNLP版本中,token_type_ids叫做segment_ids

# 单句输入
single_seg_input = tokenizer(text="请输入测试样例")
# 句对输入
multi_seg_input = tokenizer(text="请输入测试样例1", text_pair="请输入测试样例2")

print("单句输入token (str): {}".format(tokenizer.convert_ids_to_tokens(single_seg_input['input_ids'])))
print("单句输入token (int): {}".format(single_seg_input['input_ids']))
# 注意,在早前的PaddleNLP版本中,token_type_ids叫做segment_ids
print("单句输入segment ids : {}".format(single_seg_input['token_type_ids']))

print()
print("句对输入token (str): {}".format(tokenizer.convert_ids_to_tokens(multi_seg_input['input_ids'])))
print("句对输入token (int): {}".format(multi_seg_input['input_ids']))
print("句对输入segment ids : {}".format(multi_seg_input['token_type_ids']))

在这里插入图片描述

Dataset

【PaddleNLP】使用预训练模型代码解读(Stack,Pad,Tuple、utils.py,偏函数)_第1张图片
【参考:dataset — PaddleNLP 文档】

from functools import partial
from paddlenlp.data import Stack, Tuple, Pad
from utils import  convert_example, create_dataloader

# 模型运行批处理大小
batch_size = 32
max_seq_length = 128

#使用partial()来固定convert_example函数的tokenizer, label_list, max_seq_length, is_test等参数值
trans_func = partial(
    convert_example,
    tokenizer=tokenizer,
    max_seq_length=max_seq_length)

# 对获取的批次数据进行处理
batchify_fn = lambda samples, fn=Tuple(
	# 这里要和返回的data 里面的数据相对应,data里面有三个值,下面就写三个
	# axis=0 按行堆叠 pad_val:填充值
    Pad(axis=0, pad_val=tokenizer.pad_token_id),  # input
    Pad(axis=0, pad_val=tokenizer.pad_token_type_id),  # segment
    Stack(dtype="int64")  # label
): [data for data in fn(samples)] # samples每个batch的数据,类型List[List[]],data类型为 List[]

train_data_loader = create_dataloader(
    train_ds, # MapDataset
    mode='train',
    batch_size=batch_size,
    batchify_fn=batchify_fn,
    trans_fn=trans_func)
dev_data_loader = create_dataloader(
    dev_ds,
    mode='dev',
    batch_size=batch_size,
    batchify_fn=batchify_fn,
    trans_fn=trans_func)

【参考:“此苹果非彼苹果”看意图识别的那些事儿】
3.调用map()方法批量处理数据
由于我们传入了lazy=False,所以我们使用load_dataset()自定义的数据集是MapDataset对象。
MapDataset是paddle.io.Dataset的功能增强版本。其内置的map()方法适合用来进行批量数据集处理。
map()方法传入的是一个用于数据处理的function。正好可以与tokenizer相配合。
4.Batchify和数据读入
使用paddle.io.BatchSampler和paddlenlp.data中提供的方法把数据组成batch。
然后使用paddle.io.DataLoader接口多线程异步加载数据。
Batchify功能详解:
【PaddleNLP】使用预训练模型代码解读(Stack,Pad,Tuple、utils.py,偏函数)_第2张图片

utils.py

import numpy as np
import paddle
import paddle.nn.functional as F
from paddlenlp.data import Stack, Tuple, Pad


def predict(model, data, tokenizer, label_map, batch_size=1):
    """
    Predicts the data labels.

    Args:
        model (obj:`paddle.nn.Layer`): A model to classify texts.
        data (obj:`List(Example)`): The processed data whose each element is a Example (numedtuple) object.
            A Example object contains `text`(word_ids) and `seq_len`(sequence length).
        tokenizer(obj:`PretrainedTokenizer`): This tokenizer inherits from :class:`~paddlenlp.transformers.PretrainedTokenizer` 
            which contains most of the methods. Users should refer to the superclass for more information regarding methods.
        label_map(obj:`dict`): The label id (key) to label str (value) map.
        batch_size(obj:`int`, defaults to 1): The number of batch.

    Returns:
        results(obj:`dict`): All the predictions labels.
    """
    examples = []
    for text in data:
        input_ids, segment_ids = convert_example(
            text,
            tokenizer,
            max_seq_length=128,
            is_test=True)
        examples.append((input_ids, segment_ids))

    batchify_fn = lambda samples, fn=Tuple(
        Pad(axis=0, pad_val=tokenizer.pad_token_id),  # input id
        Pad(axis=0, pad_val=tokenizer.pad_token_id),  # segment id
    ): fn(samples)

    # Seperates data into some batches.
    batches = []
    one_batch = []
    for example in examples:
        one_batch.append(example)
        if len(one_batch) == batch_size:
            batches.append(one_batch)
            one_batch = []
    if one_batch:
        # The last batch whose size is less than the config batch_size setting.
        batches.append(one_batch)

    results = []
    model.eval()
    for batch in batches:
        input_ids, segment_ids = batchify_fn(batch)
        input_ids = paddle.to_tensor(input_ids)
        segment_ids = paddle.to_tensor(segment_ids)
        logits = model(input_ids, segment_ids)
        probs = F.softmax(logits, axis=1)
        idx = paddle.argmax(probs, axis=1).numpy()
        idx = idx.tolist()
        labels = [label_map[i] for i in idx]
        results.extend(labels)
    return results


@paddle.no_grad()
def evaluate(model, criterion, metric, data_loader):
    """
    Given a dataset, it evals model and computes the metric.

    Args:
        model(obj:`paddle.nn.Layer`): A model to classify texts.
        data_loader(obj:`paddle.io.DataLoader`): The dataset loader which generates batches.
        criterion(obj:`paddle.nn.Layer`): It can compute the loss.
        metric(obj:`paddle.metric.Metric`): The evaluation metric.
    """
    model.eval()
    metric.reset() # 重置
    losses = []
    for batch in data_loader:
        input_ids, token_type_ids, labels = batch
        logits = model(input_ids, token_type_ids)
        loss = criterion(logits, labels)
        losses.append(loss.numpy()) 
        correct = metric.compute(logits, labels)
        metric.update(correct)
        accu = metric.accumulate()
    print("eval loss: %.5f, accu: %.5f" % (np.mean(losses), accu))
    model.train() # 继续训练
    metric.reset()


def convert_example(example, tokenizer, max_seq_length=512, is_test=False):
    """
    Builds model inputs from a sequence or a pair of sequence for sequence classification tasks
    by concatenating and adding special tokens. And creates a mask from the two sequences passed 
    to be used in a sequence-pair classification task.
        
    A BERT sequence has the following format:

    - single sequence: ``[CLS] X [SEP]``
    - pair of sequences: ``[CLS] A [SEP] B [SEP]``

    A BERT sequence pair mask has the following format:
    ::
        0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
        | first sequence    | second sequence |

    If only one sequence, only returns the first portion of the mask (0's).


    Args:
        example(obj:`list[str]`): List of input data, containing text and label if it have label.
        tokenizer(obj:`PretrainedTokenizer`): This tokenizer inherits from :class:`~paddlenlp.transformers.PretrainedTokenizer` 
            which contains most of the methods. Users should refer to the superclass for more information regarding methods.
        max_seq_len(obj:`int`): The maximum total input sequence length after tokenization. 
            Sequences longer than this will be truncated, sequences shorter will be padded.
        is_test(obj:`False`, defaults to `False`): Whether the example contains label or not.

    Returns:
        input_ids(obj:`list[int]`): The list of token ids.
        token_type_ids(obj: `list[int]`): List of sequence pair mask.
        label(obj:`numpy.array`, data type of int64, optional): The input label if not is_test.
    """
    encoded_inputs = tokenizer(text=example["text"], max_seq_len=max_seq_length)
    input_ids = encoded_inputs["input_ids"]
    token_type_ids = encoded_inputs["token_type_ids"]

    if not is_test:
        label = np.array([example["label"]], dtype="int64")
        return input_ids, token_type_ids, label
    else:
        return input_ids, token_type_ids


def create_dataloader(dataset,
                      mode='train',
                      batch_size=1,
                      batchify_fn=None,
                      trans_fn=None):
    if trans_fn:
        # 相当于给convert_example函数传入example=dataset(dataset:paddlenlp.datasets.dataset.MapDataset, dataset.data:List[str])
        # 【参考:[dataset — PaddleNLP 文档](https://paddlenlp.readthedocs.io/zh/latest/source/paddlenlp.datasets.dataset.html)】
        # MapDataset下有map函数,默认给fn传入一个single sample
        dataset = dataset.map(trans_fn) 
        

    shuffle = True if mode == 'train' else False #如果不是训练集,则不打乱顺序
    if mode == 'train':
        # DistributedBatchSampler 分布式批采样器加载数据
        batch_sampler = paddle.io.DistributedBatchSampler(
            dataset, batch_size=batch_size, shuffle=shuffle)
    else:
        # 生成一个取样器
        batch_sampler = paddle.io.BatchSampler(
            dataset, batch_size=batch_size, shuffle=shuffle)

    return paddle.io.DataLoader(
        dataset=dataset,
        batch_sampler=batch_sampler, # 批次采样
        collate_fn=batchify_fn, # 对抽取的批次数据进行处理
        return_list=True) # 返回List


项目二

【参考:『NLP经典项目集』01:seq2vec是什么? 瞧瞧怎么用它做情感分析_副本 - 人工智能学习与实训社区】

使用高阶API训练

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections import defaultdict
import re

from paddlenlp import Taskflow
import numpy as np
import paddle

word_segmenter = Taskflow("word_segmentation") # 分词器


def create_dataloader(dataset,
                      trans_fn=None,
                      mode='train',
                      batch_size=1,
                      batchify_fn=None):
    """
    Creats dataloader.

    Args:
        dataset(obj:`paddle.io.Dataset`): Dataset instance.
        trans_fn(obj:`callable`, optional, defaults to `None`): function to convert a data sample to input ids, etc.
        mode(obj:`str`, optional, defaults to obj:`train`): If mode is 'train', it will shuffle the dataset randomly.
        batch_size(obj:`int`, optional, defaults to 1): The sample number of a mini-batch.
        batchify_fn(obj:`callable`, optional, defaults to `None`): function to generate mini-batch data by merging
            the sample list, None for only stack each fields of sample in axis
            0(same as :attr::`np.stack(..., axis=0)`).

    Returns:
        dataloader(obj:`paddle.io.DataLoader`): The dataloader which generates batches.
    """
    # 相当于给convert_example函数传入example=dataset(dataset:paddlenlp.datasets.dataset.MapDataset, dataset.data:List[str])
    # 【参考:[dataset — PaddleNLP 文档](https://paddlenlp.readthedocs.io/zh/latest/source/paddlenlp.datasets.dataset.html)】
    # MapDataset下有map函数,默认给fn传入一个single sample
    if trans_fn:
        dataset = dataset.map(trans_fn)

    shuffle = True if mode == 'train' else False # 如果不是训练集,则不打乱顺序
    if mode == "train":
        # DistributedBatchSampler 分布式批采样器加载数据
        sampler = paddle.io.DistributedBatchSampler(
            dataset=dataset, batch_size=batch_size, shuffle=shuffle)
    else:
        # 生成一个取样器
        sampler = paddle.io.BatchSampler(
            dataset=dataset, batch_size=batch_size, shuffle=shuffle)

    dataloader = paddle.io.DataLoader(
        dataset,
        batch_sampler=sampler, # 批次采样
        collate_fn=batchify_fn) # 对抽取的批次数据进行处理

    return dataloader

# 数据转换 str->int
def convert_example(example, tokenizer, is_test=False):
    """
    Builds model inputs from a sequence for sequence classification tasks. 
    It use `jieba.cut` to tokenize text.

    Args:
        example(obj:`list[str]`): List of input data, containing text and label if it have label.
        tokenizer(obj: paddlenlp.data.JiebaTokenizer): It use jieba to cut the chinese string.
        is_test(obj:`False`, defaults to `False`): Whether the example contains label or not.

    Returns:
        input_ids(obj:`list[int]`): The list of token ids.
        valid_length(obj:`int`): The input sequence valid length.
        label(obj:`numpy.array`, data type of int64, optional): The input label if not is_test.
    """

    input_ids = tokenizer.encode(example["text"])
    valid_length = np.array(len(input_ids), dtype='int64')
    input_ids = np.array(input_ids, dtype='int64')

    if not is_test:
        label = np.array(example["label"], dtype="int64")
        return input_ids, valid_length, label
    else:
        return input_ids, valid_length


def preprocess_prediction_data(data, tokenizer):
    """
    It process the prediction data as the format used as training.

    Args:
        data (obj:`List[str]`): The prediction data whose each element is  a tokenized text.
        tokenizer(obj: paddlenlp.data.JiebaTokenizer): It use jieba to cut the chinese string.

    Returns:
        examples (obj:`List(Example)`): The processed data whose each element is a Example (numedtuple) object.
            A Example object contains `text`(word_ids) and `seq_len`(sequence length).

    """
    examples = []
    for text in data:
        ids = tokenizer.encode(text)
        examples.append([ids, len(ids)])
    return examples


# 构建词汇表
def build_vocab(texts,
                stopwords=[],
                num_words=None,
                min_freq=10,
                unk_token="[UNK]",
                pad_token="[PAD]"):
    """
    According to the texts, it is to build vocabulary.

    Args:
        texts (obj:`List[str]`): The raw corpus data.
        num_words (obj:`int`): the maximum size of vocabulary.
        stopwords (obj:`List[str]`): The list where each element is a word that will be
            filtered from the texts.
        min_freq (obj:`int`): the minimum word frequency of words to be kept.
        unk_token (obj:`str`): Special token for unknow token.
        pad_token (obj:`str`): Special token for padding token.

    Returns:
        word_index (obj:`Dict`): The vocabulary from the corpus data.

    """
    word_counts = defaultdict(int) # defaultdict默认找不到键时返回默认值,int对应0
    for text in texts:
        if not text: # text为None时
            continue
        for word in word_segmenter(text): #  word_segmenter(text) 返回一个分词后的列表
            if word in stopwords: # 去停用词
                continue
            word_counts[word] += 1

    wcounts = []
    for word, count in word_counts.items():
        if count < min_freq: # 词的频率小于min_freq
            continue
        wcounts.append((word, count))
    wcounts.sort(key=lambda x: x[1], reverse=True) # 按照词的频率递减排序(高频排前面)
    # -2 for the pad_token and unk_token which will be added to vocab.
    if num_words is not None and len(wcounts) > (num_words - 2):
        wcounts = wcounts[:(num_words - 2)] # 取频率最大的前num_words - 2个
    # add the special pad_token and unk_token to the vocabulary 
    sorted_voc = [pad_token, unk_token]
    sorted_voc.extend(wc[0] for wc in wcounts) # 获取词典中所有的词
    # list(range(len(sorted_voc)))) 根据sorted_voc的长度生成[1,...len]的序列,序列的值即为词的编号
    # zip返回一个tuple,然后依据这个tuple生成字典
    word_index = dict(zip(sorted_voc, list(range(len(sorted_voc)))))
    return word_index

你可能感兴趣的:(PaddleNLP,paddlepaddle,python,深度学习)