TVloss

TV Loss(Total Variation Loss),全名为总变分损失函数,TV Loss作为一种正则项配合损失函数去调节网络学习。总变分的公式如下:

 即求每一个像素与其下方像素和右方像素的差的平方相加再开根号的和。

 TV值和噪声是线性相关的,噪声越大TV值也会越大,所以TV值可以作为在图像复原或超分辨等任务中的一种指导正侧项,TVloss越小则图像噪声越小,图像更加平滑。

效果图:右侧为加入TVloss指导后的结果。

TVloss_第1张图片

代码:

import torch
import torch.nn as nn
from torchvision import transforms
import numpy as np
import os
import time
import pathlib
from matplotlib import pyplot as plt
import warnings

np.set_printoptions(threshold=np.inf)
warnings.filterwarnings(action='ignore')


def _tensor_size(t):
    return t.size()[1] * t.size()[2] * t.size()[3]


def tv_loss(x):

    h_x = x.size()[2]
    w_x = x.size()[3]
    count_h = _tensor_size(x[:, :, 1:, :])
    count_w = _tensor_size(x[:, :, :, 1:])
    h_tv = torch.pow((x[:, :, 1:, :] - x[:, :, :h_x - 1, :]), 2).sum()
    w_tv = torch.pow((x[:, :, :, 1:] - x[:, :, :, :w_x - 1]), 2).sum()
    return 2*(h_tv/count_h+w_tv/count_w)


class TV_Loss(nn.Module):
    def __init__(self,TVLoss_weight=1):
        super(TV_Loss, self).__init__()
        self.TVLoss_weight = TVLoss_weight

    def forward(self,x):
        batch_size=x.shape[0]
        return self.TVLoss_weight*tv_loss(x)/batch_size


device=torch.device("cuda" if torch.cuda.is_available() else "cpu")
x=torch.randint(10,size=(1,1,3,3))
x=x.to(device)
print(x)
creation=TV_Loss().to(device)
loss=creation(x)
print(loss)

你可能感兴趣的:(深度学习,人工智能)