- 目标检测(object detection)
加油吧zkf
目标检测目标检测人工智能计算机视觉
目标检测作为计算机视觉的核心技术,在自动驾驶、安防监控、医疗影像等领域发挥着不可替代的作用。本文将系统讲解目标检测的概念、原理、主流模型、常见数据集及应用场景,帮助读者构建对这一技术的完整认知。一、目标检测的核心概念目标检测(ObjectDetection)是指在图像或视频中自动定位并识别出所有感兴趣的目标的技术。它需要解决两个核心问题:分类(Classification):确定图像中每个目标的类
- 微算法科技的前沿探索:量子机器学习算法在视觉任务中的革新应用
MicroTech2025
量子计算算法
在信息技术飞速发展的今天,计算机视觉作为人工智能领域的重要分支,正逐步渗透到我们生活的方方面面。从自动驾驶到人脸识别,从医疗影像分析到安防监控,计算机视觉技术展现了巨大的应用潜力。然而,随着视觉任务复杂度的不断提升,传统机器学习算法在处理大规模、高维度数据时遇到了计算瓶颈。在此背景下,量子计算作为一种颠覆性的计算模式,以其独特的并行处理能力和指数级增长的计算空间,为解决这一难题提供了新的思路。微算
- AI在垂直领域的深度应用:医疗、金融与自动驾驶的革新之路
AI在垂直领域的深度应用:医疗、金融与自动驾驶的革新之路一、医疗领域:AI驱动的精准诊疗与效率提升1.医学影像诊断AI算法通过深度学习技术,已实现对X光、CT、MRI等影像的快速分析,辅助医生检测癌症、骨折等疾病。例如,GoogleDeepMind的AI系统在乳腺癌筛查中,误检率比人类专家低9.4%;中国的推想医疗AI系统可在20秒内完成肺部CT扫描分析,为急诊救治争取黄金时间。2.药物研发传统药
- 铸造软件交付的“自动驾驶”系统——AI大模型如何引爆DevOps革命
LucianaiB
评测人工智能自动驾驶devops
铸造软件交付的“自动驾驶”系统——AI大模型如何引爆DevOps革命嗨,我是LucianaiB!总有人间一两风,填我十万八千梦。路漫漫其修远兮,吾将上下而求索。摘要(Abstract)本文深入探讨了人工智能大模型(AILargeModels)如何驱动DevOps从“自动化”(Automation)向“自主化”(Autonomous)的革命性跃迁。文章指出,AI大模型正成为现代软件工厂的“中枢神经系
- 小型化与低功耗工业数据采集卡的在哪些行业有强劲需求?
番茄老夫子
数据采集卡
小型化与低功耗工业数据采集卡在汽车、医疗、能源等多个行业有着强劲需求,以下是具体介绍:汽车行业:在汽车电子系统中,如电池管理系统、电机控制和自动驾驶系统等,需要采集大量传感器数据。小型化低功耗的数据采集卡可轻松嵌入汽车内部紧凑空间,且能在车辆长时间运行中保持低能耗,例如用于实时监控车载网络信号,优化ECU性能,同时满足汽车对零部件小型化、轻量化以及节能的要求。医疗行业:医疗设备如呼吸机、心脏监测仪
- 最全 自动驾驶数据集 (11/4号已更新)
数据猎手小k
自动驾驶人工智能机器学习
自动驾驶是一个快速发展的行业,它融合了人工智能、机器学习、传感器技术、高精度地图和先进的计算平台等多种技术。技术方面,自动驾驶汽车依赖于先进的传感器、如激光雷达、摄像头、毫米波雷达等,以及强大的计算平台来处理大量数据,自动驾驶数据集是训练和验证自动驾驶系统的关键资源,它提供了丰富的场景和条件,使算法能够学习和适应复杂的真实世界驾驶环境。一、研究背景自动驾驶技术的发展需要大量的数据来训练和优化算法,
- BEV开山之作Lift-Splat-Shot (LSS) 深度详解
shuaishuaideyuzi
3D视觉入门人工智能pythonpytorch3d计算机视觉
在自动驾驶感知系统中,将多视角图像转换为鸟瞰图(BEV)是一个关键步骤。Lift-Splat-Shot(LSS)是一种高效的视角转换方法,能够将透视视图特征转换为BEV空间,从而实现更准确的3D物体检测。本文将详细解析LSS的工作原理、技术细节及其应用场景。一、LSS概述LSS(Lift-Splat-Shot)是由PhilippHenzler等人于2021年提出的一种用于自动驾驶感知系统的视角转换
- 自动驾驶环境感知:天气数据采集与融合技术实战
遥感研究森1024
实时天气气象智能驾驶
天气与我们日常各类生活场景密不可分,在驾驶场景里当车主发动汽车准备驶向目的地时,窗外的阴晴或许只是直观感受,而真正影响驾驶安全与行程效率的,可能是几公里外的突发暴雨、桥面的结冰预警,或是前方路段的强侧风等级。在智能出行成为趋势的今天,手机App与车机系统的无缝联动,正让天气数据从“泛泛的播报”升级为“贴身的指引”。要实现这一体验跃升,关键在于筛选出那些与驾驶场景深度绑定的天气信息——它们不仅需要精
- 【自动驾驶】经典LSS算法解析——深度估计
IRevers
个人学习笔记自动驾驶算法人工智能深度学习python机器学习
LSS-Lift.Splat,Shoot论文题目:Lift,Splat,Shoot:EncodingImagesFromArbitraryCameraRigsbyImplicitlyUnprojectingto3D代码:https://github.com/nv-tlabs/lift-splat-shoot概括:先做深度估计和特征融合,然后投影到BEV视图中,在BEV视图中做特征融合,在融合后的特
- BEV感知算法:自动驾驶的“上帝视角“革命
fmvrj34202
算法
在自动驾驶技术快速发展的今天,BEV(Bird'sEyeView,鸟瞰图)感知算法正成为行业关注的焦点。这项突破性技术通过将多传感器数据统一映射到鸟瞰视角,为自动驾驶系统构建了前所未有的全局环境认知能力,堪称自动驾驶领域的"上帝视角"革命。BEV的核心技术原理BEV感知算法的核心在于将来自摄像头、激光雷达等不同传感器的异构数据,通过深度学习网络统一转换到俯视坐标系。这一过程主要依靠三大关键技术:多
- AIGC与自动驾驶:文心一言的车载交互设计
AI天才研究院
ChatGPT实战计算AgenticAI实战AIGC自动驾驶文心一言ai
AIGC与自动驾驶:文心一言的车载交互设计关键词:AIGC、自动驾驶、车载交互、文心一言、自然语言处理、多模态交互、用户体验摘要:本文深入探讨人工智能生成内容(AIGC)技术在自动驾驶领域的创新应用,特别是百度文心一言如何重构车载交互体验。通过解析文心一言的核心技术架构、多模态融合算法、场景化交互模型,结合具体代码实现和数学模型,揭示其在语音交互、情境理解、个性化服务等场景中的技术优势。同时通过项
- 【论文笔记】GaussianFusion: Gaussian-Based Multi-Sensor Fusion for End-to-End Autonomous Driving
原文链接:https://arxiv.org/abs/2506.00034v1简介:现有的多传感器融合方法多使用基于注意力的拉直(flatten)融合或通过几何变换的BEV融合,但前者可解释性差,后者计算开销大(如下图(a)(b)所示)。本文提出GaussianFusion(下图(c)),一种基于高斯的多传感器融合框架,用于端到端自动驾驶。使用直观而紧凑的高斯表达,聚合不同传感器的信息。具体来说,
- 为什么选择ER-GNSS/MINS-07?——低成本高精度的组合导航解决方案
导航技术的痛点:单一系统难以应对复杂环境无论是自动驾驶汽车、无人机巡检,还是精准农业、飞行记录仪,高精度、高可靠的导航都是核心需求。然而,传统导航技术各有短板:卫星导航(GNSS):信号易受遮挡(如城市峡谷、隧道),且易受干扰或欺骗。惯性导航(INS):自主性强,但误差随时间累积,几分钟后定位漂移。多源融合:组合导航的“智慧大脑”组合导航系统(GNSS/INS)通过多源传感器融合,结合卫星导航的长
- 模型融合与人机协同:构建人机共生的智能未来
AI天才研究院
AgenticAI实战计算AI人工智能与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍在科技日新月异的今天,人工智能(AI)已经成为了我们生活中不可或缺的一部分。从智能手机,到自动驾驶汽车,再到医疗诊断,AI的应用已经渗透到了我们生活的方方面面。然而,尽管AI的发展已经取得了显著的成就,但是我们仍然面临着一个重大的挑战:如何让AI系统更好地理解和适应人类的需求,以实现人机共生的智能未来。为了解决这个问题,越来越多的研究者开始探索模型融合和人机协同的方法。2.核心概念与联
- 目标检测YOLO实战应用案例100讲-基于深度学习的自动驾驶目标检测算法研究(续)
林聪木
目标检测YOLO深度学习
目录基于双蓝图卷积的轻量化自动驾驶目标检测算法5.1引言5.2DarkNet53网络冗余性分析5.3双蓝图卷积网络5.4实验结果及分析基于深度学习的自动驾驶目标检测算法研究与应用传统的目标检测算法目标检测基线算法性能对比与选择相关理论和算法基础2.1引言2.2人工神经网络2.3FCOS目标检测算法2.4复杂交通场景下的目标检测难点与FCOS改进方案基于FCOS的目标检测算法改进3.1引言3.2Re
- 人工智能怎么入门?零基础入门指南:从小白到AI实战者的第一步
OpenCV图像识别
人工智能人工智能计算机视觉自然语言处理神经网络机器学习
人工智能(AI)是当今最具前景的科技领域之一。从聊天机器人到自动驾驶,从图像识别到语音翻译,AI正在以前所未有的速度改变世界。但对于初学者来说,一个最常见的问题是:“我没有基础,也不是学数学或计算机的,人工智能还能学吗?我该怎么入门?”答案是:可以学,而且你并不孤单。越来越多的人正在以“跨专业、转行、自学”的方式进入AI领域。关键是,你需要一个清晰的入门路径,理解应该先做什么、学什么、避开什么误区
- 自动驾驶感知系统
三十度角阳光的问候
自动驾驶人工智能机器学习
目录感知传感系统介绍定位技术介绍自动驾驶感知传感系统激光雷达原理激光雷达类型激光雷达测距原理知名供应商介绍毫米波雷达超声波雷达工作原理超声波雷达类型常见自动驾驶传感器品牌及产品感知传感系统介绍利用摄像头捕捉图像信息,如道路标志、交通信号、车辆、行人等,为自动驾驶系统提供决策依据。通过发射激光束并测量反射时间,计算周围物体的距离和位置,提供高精度信息和三维地图。利用毫米波电磁波检测短距离障碍物,测量
- 自动驾驶ROS2应用技术详解
陈纬度啊
AutoCar自动驾驶unix人工智能
自动驾驶ROS2应用技术详解目录自动驾驶ROS2节点工作流程自动驾驶感知融合技术详解多传感器数据同步技术详解ROS2多节点协作与自动驾驶系统最小节点集1.自动驾驶ROS2节点工作流程1.1感知输出Topic的后续处理在自动驾驶系统中,感知节点输出的各种Topic会被下游的不同模块消费和处理:安全监控模块控制执行模块规划决策模块感知融合模块感知输出TopicSafetyMonitor安全监控Emer
- 语义分割模型的轻量化与准确率提升研究
pk_xz123456
仿真模型深度学习算法transformer深度学习人工智能算法数据结构
语义分割模型的轻量化与准确率提升研究1.引言语义分割是计算机视觉领域的核心任务之一,它要求模型为图像中的每个像素分配一个类别标签。随着深度学习的发展,语义分割模型在多个领域得到了广泛应用,如自动驾驶、医学影像分析、遥感图像解译等。然而,现有的语义分割模型往往面临两个主要挑战:模型复杂度高导致难以部署在资源受限的设备上,以及准确率仍有提升空间以满足实际应用需求。本文将从模型轻量化和准确率提升两个角度
- Python深度学习实践:建立端到端的自动驾驶系统
AI天才研究院
AgenticAI实战计算AI人工智能与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
Python深度学习实践:建立端到端的自动驾驶系统1.背景介绍自动驾驶系统是当今科技领域最具挑战性和前景的应用之一。它融合了计算机视觉、深度学习、规划与控制等多个领域的先进技术,旨在实现车辆的自主感知、决策和操控。随着人工智能技术的不断发展,越来越多的公司和研究机构投入了大量资源来开发自动驾驶系统。Python作为一种高效、易学且开源的编程语言,在这一领域扮演着重要角色。本文将探讨如何利用Pyth
- 在Carla上应用深度强化学习实现自动驾驶(一)
寒霜似karry
自动驾驶人工智能机器学习
carla环境下基于强化学习的自动驾驶_哔哩哔哩_bilibili本篇文章是小编在pycharm上自己手敲代码学习自动驾驶的第一篇文章,主要讲述如何在Carla中控制我们自己生成的汽车并且使用rgb摄像头传感器获取图像数据。以下代码参考自:(如有侵权,请联系我将立即删除)使用Carla和Python的自动驾驶汽车第2部分——控制汽车并获取传感器数据-CSDN博客1、导入carla(其中的路径根据自
- Tesla的FSD 架构设计
WSSWWWSSW
智能驾驶汽车人工智能FSD
特斯拉的FSD(完全自动驾驶)架构设计以端到端神经网络为核心,结合专用硬件加速、海量数据训练和持续OTA迭代,形成了一套高度集成的系统。以下从硬件、软件、算法、数据处理和安全机制五个维度展开分析:一、硬件架构:从HW3.0到AI5的算力跃迁HW3.0基础设计采用三星14nm工艺的定制SoC,包含12个Cortex-A72CPU核心、2个NPU(合计73.7TOPS算力)和Mali-G71GPU,支
- FDMA读写AXI BRAM交互:FPGA高速数据传输的核心技术
芯作者
D1:ZYNQ设计fpga开发
在图像处理系统中,当1080P视频流以每秒60帧的速度传输时,传统DMA每帧会浪费27%的带宽在地址管理上——而FDMA技术能将这些损失降至3%以内现代FPGA系统中,高效数据搬运往往是性能瓶颈的关键所在。当你在手机上流畅播放4K视频、在自动驾驶系统中实时处理激光雷达点云时,背后都依赖于FDMA(FlexibleDirectMemoryAccess)与AXIBRAM的高效交互技术。本文将深入探讨这
- Python 机器学习实战:Scikit-learn 算法宝典,从线性回归到支持向量机
清水白石008
pythonPython题库python机器学习算法
Python机器学习实战:Scikit-learn算法宝典,从线性回归到支持向量机引言各位Python工程师,大家好!欢迎来到激动人心的机器学习世界!在这个数据驱动的时代,机器学习已经渗透到我们生活的方方面面,从智能推荐系统到自动驾驶汽车,都离不开机器学习技术的支撑。作为一名Python开发者,掌握机器学习技能,无疑将为您的职业发展注入强大的动力,让您在人工智能浪潮中占据先机。Scikit-lea
- AI原生应用:多模态交互技术的5大核心应用场景解析
AIGC应用创新大全
AI大模型与大数据技术AI人工智能与大数据应用开发MCP&Agent云算力网络AI-nativeai
#AI原生应用:多模态交互技术的5大核心应用场景解析>关键词:多模态交互、AI原生应用、人机交互、深度学习、应用场景>摘要:本文将深入解析多模态交互技术的核心原理,通过智能家居、医疗诊断、自动驾驶、教育创新和虚拟助手五大应用场景,揭示AI如何像人类感官协同工作般理解世界。文章包含技术原理图解、真实案例代码和未来趋势预测。##背景介绍###目的和范围解析多模态交互技术在AI原生应用中的落地实践,涵盖
- 《王者荣耀》游戏优化的AI革命:从性能提升到生态治理
AI编程员
001AI传统&编程语言002AI编程工具汇总003AI编程作品汇总人工智能笔记学习深度学习游戏
目录:AI技术进化历程:使用时间轴和表格介绍“绝悟”AI从基础操作到职业水平的成长过程,以及“开悟”平台的技术外溢效应。性能优化策略:通过终端适配方案表格,分析预计算烘焙、多线程优化等技术如何解决亿级用户的设备兼容问题。游戏环境治理:列举AI接管、违规检测等机制如何应对挂机、摆烂等破坏公平性的行为。产业技术外溢:说明游戏AI如何向智能制造、自动驾驶等领域输出协作决策模型。伦理争议:探讨“超规格能力
- 人工智能动画展示人类的特征
AGI大模型与大数据研究院
AI大模型应用开发实战javapythonjavascriptkotlingolang架构人工智能
人工智能,动画,人类特征,情感识别,行为模拟,机器学习,深度学习,自然语言处理1.背景介绍人工智能(AI)技术近年来发展迅速,已渗透到生活的方方面面。从智能语音助手到自动驾驶汽车,AI正在改变着我们的世界。然而,尽管AI技术取得了令人瞩目的成就,但它仍然难以完全模拟人类的复杂行为和特征。人类的特征是多方面的,包括情感、认知、社交和创造力等。这些特征是人类区别于其他生物的重要标志,也是人类社会文明发
- 初始CNN(卷积神经网络)
超龄超能程序猿
机器学习cnn人工智能神经网络
卷积神经网络(ConvolutionalNeuralNetwork,简称CNN)作为深度学习的重要分支,在图像识别、目标检测、语义分割等领域大放异彩。无论是手机上的人脸识别解锁,还是自动驾驶汽车对道路和行人的识别,背后都离不开CNN的强大能力一、CNN诞生的背景与意义在CNN出现之前,传统的图像识别方法主要依赖人工提取特征,例如使用SIFT(尺度不变特征变换)、HOG(方向梯度直方图)等算法。这些
- 目标检测:从基础原理到前沿技术全面解析
随机森林404
计算机视觉目标检测人工智能计算机视觉
引言在计算机视觉领域,目标检测是一项核心且极具挑战性的任务,它不仅要识别图像中有什么物体,还要确定这些物体在图像中的具体位置。随着人工智能技术的快速发展,目标检测已成为智能监控、自动驾驶、医疗影像分析等众多应用的基础技术。本文将全面介绍目标检测的基础概念、发展历程、关键技术、实践应用以及未来趋势,为读者提供系统性的知识框架。第一章目标检测概述1.1目标检测的定义与重要性目标检测(ObjectDet
- 从Apollo record文件中提取坐标信息绘制地图轨迹
Hi20240217
代码片段学习Apollo自动驾驶地图
从Apollorecord文件中提取坐标信息绘制地图轨迹一、背景二、操作步骤2.1下载record文件并解压2.2查看record文件信息2.3查询Sunnyvale的经纬度2.4从record中提取position绘制地图轨迹2.5绘制卫星地图轨迹2.6运行脚本三、技术总结一、背景自动驾驶技术的发展离不开大量真实道路数据的收集和分析。百度Apollo平台使用record文件格式记录车辆在实际道路
- jquery实现的jsonp掉java后台
知了ing
javajsonpjquery
什么是JSONP?
先说说JSONP是怎么产生的:
其实网上关于JSONP的讲解有很多,但却千篇一律,而且云里雾里,对于很多刚接触的人来讲理解起来有些困难,小可不才,试着用自己的方式来阐释一下这个问题,看看是否有帮助。
1、一个众所周知的问题,Ajax直接请求普通文件存在跨域无权限访问的问题,甭管你是静态页面、动态网页、web服务、WCF,只要是跨域请求,一律不准;
2、
- Struts2学习笔记
caoyong
struts2
SSH : Spring + Struts2 + Hibernate
三层架构(表示层,业务逻辑层,数据访问层) MVC模式 (Model View Controller)
分层原则:单向依赖,接口耦合
1、Struts2 = Struts + Webwork
2、搭建struts2开发环境
a>、到www.apac
- SpringMVC学习之后台往前台传值方法
满城风雨近重阳
springMVC
springMVC控制器往前台传值的方法有以下几种:
1.ModelAndView
通过往ModelAndView中存放viewName:目标地址和attribute参数来实现传参:
ModelAndView mv=new ModelAndView();
mv.setViewName="success
- WebService存在的必要性?
一炮送你回车库
webservice
做Java的经常在选择Webservice框架上徘徊很久,Axis Xfire Axis2 CXF ,他们只有一个功能,发布HTTP服务然后用XML做数据传输。
是的,他们就做了两个功能,发布一个http服务让客户端或者浏览器连接,接收xml参数并发送xml结果。
当在不同的平台间传输数据时,就需要一个都能解析的数据格式。
但是为什么要使用xml呢?不能使json或者其他通用数据
- js年份下拉框
3213213333332132
java web ee
<div id="divValue">test...</div>测试
//年份
<select id="year"></select>
<script type="text/javascript">
window.onload =
- 简单链式调用的实现技术
归来朝歌
方法调用链式反应编程思想
在编程中,我们可以经常遇到这样一种场景:一个实例不断调用它自身的方法,像一条链条一样进行调用
这样的调用你可能在Ajax中,在页面中添加标签:
$("<p>").append($("<span>").text(list[i].name)).appendTo("#result");
也可能在HQ
- JAVA调用.net 发布的webservice 接口
darkranger
webservice
/**
* @Title: callInvoke
* @Description: TODO(调用接口公共方法)
* @param @param url 地址
* @param @param method 方法
* @param @param pama 参数
* @param @return
* @param @throws BusinessException
- Javascript模糊查找 | 第一章 循环不能不重视。
aijuans
Way
最近受我的朋友委托用js+HTML做一个像手册一样的程序,里面要有可展开的大纲,模糊查找等功能。我这个人说实在的懒,本来是不愿意的,但想起了父亲以前教我要给朋友搞好关系,再加上这也可以巩固自己的js技术,于是就开始开发这个程序,没想到却出了点小问题,我做的查找只能绝对查找。具体的js代码如下:
function search(){
var arr=new Array("my
- 狼和羊,该怎么抉择
atongyeye
工作
狼和羊,该怎么抉择
在做一个链家的小项目,只有我和另外一个同事两个人负责,各负责一部分接口,我的接口写完,并全部测联调试通过。所以工作就剩下一下细枝末节的,工作就轻松很多。每天会帮另一个同事测试一些功能点,协助他完成一些业务型不强的工作。
今天早上到公司没多久,领导就在QQ上给我发信息,让我多协助同事测试,让我积极主动些,有点责任心等等,我听了这话,心里面立马凉半截,首先一个领导轻易说
- 读取android系统的联系人拨号
百合不是茶
androidsqlite数据库内容提供者系统服务的使用
联系人的姓名和号码是保存在不同的表中,不要一下子把号码查询来,我开始就是把姓名和电话同时查询出来的,导致系统非常的慢
关键代码:
1, 使用javabean操作存储读取到的数据
package com.example.bean;
/**
*
* @author Admini
- ORACLE自定义异常
bijian1013
数据库自定义异常
实例:
CREATE OR REPLACE PROCEDURE test_Exception
(
ParameterA IN varchar2,
ParameterB IN varchar2,
ErrorCode OUT varchar2 --返回值,错误编码
)
AS
/*以下是一些变量的定义*/
V1 NUMBER;
V2 nvarc
- 查看端号使用情况
征客丶
windows
一、查看端口
在windows命令行窗口下执行:
>netstat -aon|findstr "8080"
显示结果:
TCP 127.0.0.1:80 0.0.0.0:0 &
- 【Spark二十】运行Spark Streaming的NetworkWordCount实例
bit1129
wordcount
Spark Streaming简介
NetworkWordCount代码
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
- Struts2 与 SpringMVC的比较
BlueSkator
struts2spring mvc
1. 机制:spring mvc的入口是servlet,而struts2是filter,这样就导致了二者的机制不同。 2. 性能:spring会稍微比struts快。spring mvc是基于方法的设计,而sturts是基于类,每次发一次请求都会实例一个action,每个action都会被注入属性,而spring基于方法,粒度更细,但要小心把握像在servlet控制数据一样。spring
- Hibernate在更新时,是可以不用session的update方法的(转帖)
BreakingBad
Hibernateupdate
地址:http://blog.csdn.net/plpblue/article/details/9304459
public void synDevNameWithItil()
{Session session = null;Transaction tr = null;try{session = HibernateUtil.getSession();tr = session.beginTran
- 读《研磨设计模式》-代码笔记-观察者模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
import java.util.Observable;
import java.util.Observer;
/**
* “观
- 重置MySQL密码
chenhbc
mysql重置密码忘记密码
如果你也像我这么健忘,把MySQL的密码搞忘记了,经过下面几个步骤就可以重置了(以Windows为例,Linux/Unix类似):
1、关闭MySQL服务
2、打开CMD,进入MySQL安装目录的bin目录下,以跳过权限检查的方式启动MySQL
mysqld --skip-grant-tables
3、新开一个CMD窗口,进入MySQL
mysql -uroot
 
- 再谈系统论,控制论和信息论
comsci
设计模式生物能源企业应用领域模型
再谈系统论,控制论和信息论
偶然看
- oracle moving window size与 AWR retention period关系
daizj
oracle
转自: http://tomszrp.itpub.net/post/11835/494147
晚上在做11gR1的一个awrrpt报告时,顺便想调整一下AWR snapshot的保留时间,结果遇到了ORA-13541这样的错误.下面是这个问题的发生和解决过程.
SQL> select * from v$version;
BANNER
-------------------
- Python版B树
dieslrae
python
话说以前的树都用java写的,最近发现python有点生疏了,于是用python写了个B树实现,B树在索引领域用得还是蛮多了,如果没记错mysql的默认索引好像就是B树...
首先是数据实体对象,很简单,只存放key,value
class Entity(object):
'''数据实体'''
def __init__(self,key,value)
- C语言冒泡排序
dcj3sjt126com
算法
代码示例:
# include <stdio.h>
//冒泡排序
void sort(int * a, int len)
{
int i, j, t;
for (i=0; i<len-1; i++)
{
for (j=0; j<len-1-i; j++)
{
if (a[j] > a[j+1]) // >表示升序
- 自定义导航栏样式
dcj3sjt126com
自定义
-(void)setupAppAppearance
{
[[UILabel appearance] setFont:[UIFont fontWithName:@"FZLTHK—GBK1-0" size:20]];
[UIButton appearance].titleLabel.font =[UIFont fontWithName:@"FZLTH
- 11.性能优化-优化-JVM参数总结
frank1234
jvm参数性能优化
1.堆
-Xms --初始堆大小
-Xmx --最大堆大小
-Xmn --新生代大小
-Xss --线程栈大小
-XX:PermSize --永久代初始大小
-XX:MaxPermSize --永久代最大值
-XX:SurvivorRatio --新生代和suvivor比例,默认为8
-XX:TargetSurvivorRatio --survivor可使用
- nginx日志分割 for linux
HarborChung
nginxlinux脚本
nginx日志分割 for linux 默认情况下,nginx是不分割访问日志的,久而久之,网站的日志文件将会越来越大,占用空间不说,如果有问题要查看网站的日志的话,庞大的文件也将很难打开,于是便有了下面的脚本 使用方法,先将以下脚本保存为 cutlog.sh,放在/root 目录下,然后给予此脚本执行的权限
复制代码代码如下:
chmo
- Spring4新特性——泛型限定式依赖注入
jinnianshilongnian
springspring4泛型式依赖注入
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- centOS安装GCC和G++
liuxihope
centosgcc
Centos支持yum安装,安装软件一般格式为yum install .......,注意安装时要先成为root用户。
按照这个思路,我想安装过程如下:
安装gcc:yum install gcc
安装g++: yum install g++
实际操作过程发现,只能有gcc安装成功,而g++安装失败,提示g++ command not found。上网查了一下,正确安装应该
- 第13章 Ajax进阶(上)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- How to determine BusinessObjects service pack and fix pack
blueoxygen
BO
http://bukhantsov.org/2011/08/how-to-determine-businessobjects-service-pack-and-fix-pack/
The table below is helpful. Reference
BOE XI 3.x
12.0.0.
y BOE XI 3.0 12.0.
x.
y BO
- Oracle里的自增字段设置
tomcat_oracle
oracle
大家都知道吧,这很坑,尤其是用惯了mysql里的自增字段设置,结果oracle里面没有的。oh,no 我用的是12c版本的,它有一个新特性,可以这样设置自增序列,在创建表是,把id设置为自增序列
create table t
(
id number generated by default as identity (start with 1 increment b
- Spring Security(01)——初体验
yang_winnie
springSecurity
Spring Security(01)——初体验
博客分类: spring Security
Spring Security入门安全认证
首先我们为Spring Security专门建立一个Spring的配置文件,该文件就专门用来作为Spring Security的配置