使用metpy的skewt画气象探空图并计算CAPE_CIN

文章目录

      • 1 metpy介绍
      • 2 官网代码介绍
      • 3 私人定制
      • 4 参考链接

1 metpy介绍

  • metpy是面向地球科学的较常用的库,可视化能力非常强,能基本满足气象学子的绘图要求。官网上给了许多示例代码,参考他们的代码进行适当的改动就可以私人定制出非常漂亮实用的图。

使用metpy的skewt画气象探空图并计算CAPE_CIN_第1张图片

  • 安装介绍

    官网上给出了安装的环境需求和安装方法,非常方便。

    #pip管理
    pip install metpy
    
    #conda管理
    conda install -c conda-forge metpy
    

2 官网代码介绍

  • 以metpy探空代码为例,进行介绍
"""
=================
Advanced Sounding
=================
Plot a sounding using MetPy with more advanced features.
Beyond just plotting data, this uses calculations from `metpy.calc` to find the lifted
condensation level (LCL) and the profile of a surface-based parcel. The area between the
ambient profile and the parcel profile is colored as well.
"""

import matplotlib.pyplot as plt
import pandas as pd

import metpy.calc as mpcalc
from metpy.cbook import get_test_data
from metpy.plots import add_metpy_logo, SkewT
from metpy.units import units

###########################################
# Upper air data can be obtained using the siphon package, but for this example we will use  即可以使用siphon包获取探空数据;
# some of MetPy's sample data.

##step1: 使用官网的示例数据,并做一些预处理

col_names = ['pressure', 'height', 'temperature', 'dewpoint', 'direction', 'speed']

df = pd.read_fwf(get_test_data('may4_sounding.txt', as_file_obj=False),
                 skiprows=5, usecols=[0, 1, 2, 3, 6, 7], names=col_names)

# Drop any rows with all NaN values for T, Td, winds
df = df.dropna(subset=('temperature', 'dewpoint', 'direction', 'speed'), how='all'
               ).reset_index(drop=True)

###########################################
# We will pull the data out of the example dataset into individual variables and
# assign units.

##step2:这一步很重要,将array数据转换为 Unit类型的数据;不转就会出错。
##获取温压湿风信息
p = df['pressure'].values * units.hPa
T = df['temperature'].values * units.degC
Td = df['dewpoint'].values * units.degC
wind_speed = df['speed'].values * units.knots
wind_dir = df['direction'].values * units.degrees
u, v = mpcalc.wind_components(wind_speed, wind_dir)

###########################################
# Create a new figure. The dimensions here give a good aspect ratio.
#创建图形,画探空图,rotation表示探空图中等温线与水平面的夹角。
fig = plt.figure(figsize=(9, 9))
# add_metpy_logo(fig, 115, 100)  #这一行在图上添加metpy官方图标
skew = SkewT(fig, rotation = 45)

# Plot the data using normal plotting functions, in this case using
# log scaling in Y, as dictated by the typical meteorological plot.
skew.plot(p, T, 'r')  #环境温度垂直廓形
skew.plot(p, Td, 'g') #环境露点垂直廓线
skew.plot_barbs(p, u, v)  #画出水平风场
skew.ax.set_ylim(1000, 100) #设置纵轴(气压)范围
skew.ax.set_xlim(-40, 60)   #设置横轴(温度)范围

# Calculate LCL height and plot as black dot. Because `p`'s first value is
# ~1000 mb and its last value is ~250 mb, the `0` index is selected for
# `p`, `T`, and `Td` to lift the parcel from the surface. If `p` was inverted,
# i.e. start from low value, 250 mb, to a high value, 1000 mb, the `-1` index
# should be selected.
#基于地面气压、温度和露点(以1000hPa充当地面),计算出抬升凝结高度LCL对应的气压层和温度,并在图上标出
lcl_pressure, lcl_temperature = mpcalc.lcl(p[0], T[0], Td[0])
skew.plot(lcl_pressure, lcl_temperature, 'ko', markerfacecolor='black')


# Calculate full parcel profile and add to plot as black line
#画出气块绝热路径
prof = mpcalc.parcel_profile(p, T[0], Td[0]).to('degC')
skew.plot(p, prof, 'k', linewidth=2)

# Shade areas of CAPE and CIN
#填充CAPE和CIN区域
skew.shade_cin(p, T, prof)
skew.shade_cape(p, T, prof)

# An example of a slanted line at constant T -- in this case the 0
# isotherm
#画出某一条温度 = k的等温线
skew.ax.axvline(0, color='c', linestyle='--', linewidth=2)

# Add the relevant special lines
#画出干绝热线、湿绝热线和 混合比线
skew.plot_dry_adiabats()
skew.plot_moist_adiabats()
skew.plot_mixing_lines()

# Show the plot
plt.show()

出图效果如下:

使用metpy的skewt画气象探空图并计算CAPE_CIN_第2张图片

  • 来看看数据类型

    print('type of p:',type(p))
    print()
    print('p:',p)
    
    '''
    type of p: .Quantity'>
    
    p: [959.0 931.3 925.0 899.3 892.0 867.9 850.0 814.0 807.9 790.0 779.2 751.3 724.3 700.0 655.0 647.5 599.4 554.7 550.0 500.0 472.5 449.0 400.0 383.7 336.4 321.9 308.1 300.0 269.0 268.6] hectopascal
    '''
    

    我也是首次接触这种类型的数据,如果有了解的,麻烦给与指导!

    而且要注意:p[0]应该最低,其他温度湿度数据也要与气压相对应,低层值在前。

  • 除此之外,matplotlib官网也提供了skew图的绘制代码,但比较粗糙,信息不够全面

使用metpy的skewt画气象探空图并计算CAPE_CIN_第3张图片

3 私人定制

参考官网代码,来一个私人定制

import numpy as np
import matplotlib.pyplot as plt
import matplotlib
import netCDF4 as nc
import os

import metpy.calc as mpcalc
from metpy.cbook import get_test_data
from metpy.plots import add_metpy_logo, SkewT
from metpy.units import units


#使得中文字体不乱码
matplotlib.rcParams['font.sans-serif'] = ['SimHei']
#matplotlib.rcParams['font.family']='sans-serif'
plt.rcParams['axes.unicode_minus']=False


os.chdir('D:/ERA5')
deta = 4
CI_file = 'D:/ERA5/CI_hecheng/' + str(deta) + '_smooth_pressure.nc'
no_CI_file = 'D:/ERA5/no_CI_hecheng/' + str(deta) + '_smooth_pressure.nc'

gap = 0.25  

#该范围包含多少个经纬度格点
grid_num = int(deta/gap)*2+1


def plot_skewt_with_mepy(file, 
                        time_deta = 0,
                        top_level = 20,
                        point_x_y = [20,20],
                        fontsize = 20,
                        ):
    
    '''
    func: 输入.nc文件,获取里面的p t td u v
    inputs:
        file:文件绝对路径 + 文件名称,eg: D:/ERA5/CI_hecheng/4_smooth_pressure.nc
        time_deta: 默认0, 即对应14:00
        top_level: 探空图中顶层气压层,默认为20hPa
        point_x_y: 选取哪个位置画出探空, 默认[20,20] 
        fontsize: 字体大小,默认20
        
    return:
    '''
    
    Vars = ['t','q',
            'u',
            'v',
            'Td'
             ]
        
    Vars_operation = ['-273.16','*1e3',
                 '*1',
                 '*1',
                 '-273.16'
                 ]
        
    #默认的以14:00为中间时间,对应的time_index = 30
    time_center = 14
    
    #确定探空点所在位置
    point_x = point_x_y[0]
    point_y = point_x_y[1]
    
    fr = nc.Dataset(file)
    
    #顶层气压在气压层中的 index, 和需要的气压
    
    top_level_index = list(fr['level'][::-1]).index(top_level)
    p = np.array(fr['level'][::-1][0:top_level_index + 1])* units.hPa
    print('p.shape:',p.shape)
    
    all_data = []
    for Var, oper in zip(Vars,Vars_operation):
        
        #确定本地时间, index=30表示北京时14时
        current_time_index = 30 + time_deta
        # local_beijing_time = time[current_time_index]+8
        local_beijing_time = time_center + time_deta
        print('local_beijing_time:',local_beijing_time)
        
        #数据是从最高层开始排序的,因此,需要进行颠倒过来
        print(Var)
        Var_data = fr[Var][:][current_time_index][-1::-1,-1::-1,:]
        
        Var_data = np.array(Var_data)[0:top_level_index + 1, point_x,point_y]
        print(Var_data.shape)
        
        #对数据进行处理
        Var_data = eval('Var_data' + oper)
        all_data.append(Var_data)
        
    fr.close()
    
    
    #按照官网例子进行数据处理和类型转换
    T = all_data[Vars.index('t')]* units.degC
    Td = all_data[Vars.index('Td')] * units.degC
    u = all_data[Vars.index('u')] * units.knots
    v = all_data[Vars.index('v')] * units.knots
    
    #如果不进行数据类型转换,就会报错
#    T = all_data[Vars.index('t')]
#    Td = all_data[Vars.index('Td')]
#    u = all_data[Vars.index('u')] 
#    v = all_data[Vars.index('v')] 
    

    #创建一个子图和句柄 ax
    fig1, ax = plt.subplots(1,1, figsize=(9, 9))
    skew = SkewT(fig1, rotation = 30)    
    
    ##画出温度,露点廓线和水平uv风场
    skew.plot(p, T, 'r')
    skew.plot(p, Td, 'g')
    skew.plot_barbs(p, u, v)
    
    # Calculate LCL height and plot as black dot. Because `p`'s first value is
    # ~1000 mb and its last value is ~250 mb, the `0` index is selected for
    # `p`, `T`, and `Td` to lift the parcel from the surface. If `p` was inverted,
    # i.e. start from low value, 250 mb, to a high value, 1000 mb, the `-1` index
    # should be selected.
    
    #基于地面气压、温度和露点(以1000hPa充当地面),计算出抬升凝结高度LCL,并在图上标出
    lcl_pressure, lcl_temperature = mpcalc.lcl(p[0], T[0], Td[0])
    skew.plot(lcl_pressure, lcl_temperature, 'ko', markerfacecolor='black')
    
    #计算出气块绝热路径,用黑色线条表示
    # Calculate full parcel profile and add to plot as black line
    prof = mpcalc.parcel_profile(p, T[0], Td[0]).to('degC')
    skew.plot(p, prof, 'k', linewidth=2)
    
    #计算出CAPE 和 CIN面积
    # Shade areas of CAPE and CIN
    skew.shade_cin(p, T, prof)
    skew.shade_cape(p, T, prof)

	#计算cape和cin值
    cape,cin = mpcalc.cape_cin(p,T,Td, prof,
                               which_el = 'most_cape',
                               )
    print('cape:',cape)
    print('cin:',cin)
    
    # An example of a slanted line at constant T -- in this case the 0
    # isotherm
    #将 0 温度等值线画出来 
    skew.ax.axvline(0, color='c', linestyle='--', linewidth=2)
    
    # Add the relevant special lines
    #画出干绝热线、湿绝热线和 混合比线
    skew.plot_dry_adiabats()
    skew.plot_moist_adiabats()
    skew.plot_mixing_lines()
    
    fontdict = {'fontsize' : fontsize}
    #设置横纵坐标数值范围
    x_left = -40
    x_right = 60
    skew.ax.set_ylim(1000, 100)
    skew.ax.set_xlim(x_left, x_right)
    
    #设置对应的xtickslabel 和 ytickslabel
    #对应的句柄是 skew.ax
    y_ticks = np.arange(1000,0,-100)
    y_tickslabel = np.arange(1000,0,-100)
    
    x_ticks = np.arange(x_left,x_right + 10,10)
    x_tickslabel = np.arange(x_left,x_right + 10,10)
    
    skew.ax.set_yticks(y_ticks)
    skew.ax.set_yticklabels(y_tickslabel, fontdict = fontdict)
    
    skew.ax.set_xticks(x_ticks)
    skew.ax.set_xticklabels(x_tickslabel, fontdict = fontdict)
    
    #设置横纵label
    skew.ax.set_ylabel('Height/hPa',fontsize = fontsize)
    skew.ax.set_xlabel('T/(℃)',fontsize = fontsize)
    
    
    #由于是在子图上画的skew的,因此ax的横纵坐标轴上,
    #会自动出现一些数字,可以使用ax.set_ticklabels功能使其不显示
    ax.set_yticklabels([])
    ax.set_xticklabels([])
    
    # Show the plot
    plt.show()    
    
    #可以查看设置了tickslabel后的ticks数值
	print('ax 的ticks:',ax.get_yticklabels()[:])
    print()
    print('skewt 的ticks:',skew.ax.get_yticklabels()[:])
       
plot_skewt_with_mepy(CI_file, 
                    time_deta = 3,
                    top_level = 200,
                    point_x_y = [20,25],
                    )

'''
outputs:
cape: 673.6904340493442 joule / kilogram
cin: -231.31875105377705 joule / kilogram

ax 的ticks: [Text(0, 0.0, ''), Text(0, 0.2, ''), Text(0, 0.4, ''), Text(0, 0.6000000000000001, ''), Text(0, 0.8, ''), Text(0, 1.0, '')]

skewt 的ticks: [Text(0, 1000, '1000'), Text(0, 900, '900'), Text(0, 800, '800'), Text(0, 700, '700'), Text(0, 600, '600'), Text(0, 500, '500'), Text(0, 400, '400'), Text(0, 300, '300'), Text(0, 200, '200'), Text(0, 100, '100')]
'''

结果如图:

使用metpy的skewt画气象探空图并计算CAPE_CIN_第4张图片

得到了信息很丰富的漂亮的探空图

4 参考链接

metpy官网

Metpy新版功能下载TLnP图设置 - Bugatii100Peagle

Siphon官网

气象上常用的一些软件和库的docker镜像

matplotlib绘制skewt官方例子

metpy计算cape_cin

你可能感兴趣的:(python可视化,大气科学,python,基础,探空图,气象,可视化,python)