softmax 分类器
两种常用的分类器之一。
1.从两个角度理解
(1)信息论中交叉熵
p是指真实的分布,q是估计的分布。
式中H(p)是真实分布的熵,当给定分布,熵就确定;
DKL(p||q)DKL(p||q)是相对熵。
softmax分类器就是要最小化估计分类概率和真实分布之间的交叉熵。
交叉熵用于评估两个分布的相似度。
(2)概率的角度
softmax函数
给定输入 xixi和参数w,分配给正确分类标签的归一化概率。
2. softmax在实际应用中的问题
softmax函数
分子和分母都做指数运算,当数值很大的时候,会出现指数爆炸等问题。
常用的处理方法是分子分母同时乘以一个常数C,
C通常取值为 −max(fj)−max(fj),使最大的值为0.
# python实现
f -= np.max(f)
p = np.exp(f)/np.sum(np.exp(f))
3. 一个简单的示例
这里需要强调的是:最后的输出直接由权重上一层的输出+偏置*求得,并没有经过sigmoid函数。
这里的输出结果是[−2.85,0.86,0.28][−2.85,0.86,0.28]。
1) 先求efjefj,
2) 求 ∑jefj∑jefj
3) 求输出概率
softmax估算出每个类别的可能性。
给一个类别的打分为[1,−2,0][1,−2,0],softmax通过上述的计算,得到概率输出[0.7,0.04,0.26][0.7,0.04,0.26]。
进一步考虑正则项的影响,假设惩罚使得得分的输出变为原来的1212,即[1,−2,0][1,−2,0]=>[0.5,−1,0][0.5,−1,0]时,最终得到的输出为[0.55,0.12,0.33][0.55,0.12,0.33].
softmax分类器会使正确的分类获得更大的概率,使错误的分类得到更小的概率。
(1)CS231n课程笔记翻译:线性分类笔记(下)
https://zhuanlan.zhihu.com/p/21102293?refer=intelligentunit
(2)cs231n-assignment1-SVM/Softmax/two-layer-nets梯度求解
https://blog.csdn.net/pjia_1008/article/details/66972060
(3)CS231n课程学习笔记(三)——Softmax分类器的实现
https://blog.csdn.net/stalbo/article/details/79379078
(4)斯坦福大学深度学习公开课cs231n学习笔记(9)softmax分类和神经网络分类代码实现
https://blog.csdn.net/piaoxuezhong/article/details/78818572