卷积神经网络(Minst数据集)
-
- 一、代码实现(CPU版)
- 二、代码实现(GPU版)
用一下例子来表示:
一、代码实现(CPU版)
import torch
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.optim as optim
batch_size = 64
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,),(0.3081,))
])
train_dataset = datasets.MNIST(root='./dataset/mnist/',
train=True,
download=True,
transform=transform)
train_loader = DataLoader(train_dataset,
shuffle=True,
batch_size=batch_size)
test_dataset = datasets.MNIST(root='./dataset/mnist/',
train=False,
download=True,
transform=transform)
test_loader = DataLoader(test_dataset,
shuffle=False,
batch_size=batch_size)
class Net(torch.nn.Module):
def __init__(self):
super(Net,self).__init__()
self.conv1 = torch.nn.Conv2d(in_channels=1,out_channels=10,kernel_size=5)
self.conv2 = torch.nn.Conv2d(in_channels=10,out_channels=20,kernel_size=5)
self.pooling = torch.nn.MaxPool2d(kernel_size=2,stride=2)
self.fc = torch.nn.Linear(320,10)
def forward(self,x):
batch_size = x.size(0)
x = F.relu(self.pooling(self.conv1(x)))
x = F.relu(self.pooling(self.conv2(x)))
x = x.view(batch_size,-1)
x = self.fc(x)
return x
model = Net()
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(),lr=0.01,momentum=0.5)
acc_list = []
epoch_list = []
def train(epoch):
epoch_list.append(epoch)
running_loss = 0.0
for batch_idx,data in enumerate(train_loader,0):
inputs,target = data
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs,target)
loss.backward()
optimizer.step()
running_loss += loss.item()
if batch_idx % 300 ==299 :
print('[%d,%5d] loss: %.3f' % (epoch+1,batch_idx+1,running_loss/300))
running_loss = 0.0
'''
在分类问题中,通常需要使用max()函数对softmax函数的输出值进行操作,求出预测值索引。下面讲解一下torch.max()函数的输入及输出值都是什么。
1. torch.max(input, dim) 函数
output = torch.max(input, dim)
输入:input是softmax函数输出的一个tensor,dim是max函数索引的维度0/1,0是每列的最大值,1是每行的最大值
输出:会返回两个tensor,第一个tensor是每行的最大值,softmax的输出中最大的是1,所以第一个tensor是全1的tensor;第二个tensor是每行最大值的索引。
'''
def test():
correct = 0
total = 0
with torch.no_grad():
for data in test_loader:
images,labels = data
outputs = model(images)
_,predicted = torch.max(outputs.data,dim=1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print("Accuracy on test set:%d %%" % (100*correct/total))
acc_list.append(100*correct/total)
if __name__=='__main__':
for epoch in range(10):
train(epoch)
test()
plt.plot(epoch_list,acc_list)
plt.xlabel("Epoch")
plt.ylabel("Accuracy")
plt.show()
运行结果:
二、代码实现(GPU版)
import torch
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.optim as optim
batch_size = 64
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,),(0.3081,))
])
train_dataset = datasets.MNIST(root='./dataset/mnist/',
train=True,
download=True,
transform=transform)
train_loader = DataLoader(train_dataset,
shuffle=True,
batch_size=batch_size)
test_dataset = datasets.MNIST(root='./dataset/mnist/',
train=False,
download=True,
transform=transform)
test_loader = DataLoader(test_dataset,
shuffle=False,
batch_size=batch_size)
class Net(torch.nn.Module):
def __init__(self):
super(Net,self).__init__()
self.conv1 = torch.nn.Conv2d(in_channels=1,out_channels=10,kernel_size=5)
self.conv2 = torch.nn.Conv2d(in_channels=10,out_channels=20,kernel_size=5)
self.pooling = torch.nn.MaxPool2d(kernel_size=2,stride=2)
self.fc = torch.nn.Linear(320,10)
def forward(self,x):
batch_size = x.size(0)
x = F.relu(self.pooling(self.conv1(x)))
x = F.relu(self.pooling(self.conv2(x)))
x = x.view(batch_size,-1)
x = self.fc(x)
return x
model = Net()
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model.to(device)
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(),lr=0.01,momentum=0.5)
acc_list = []
epoch_list = []
def train(epoch):
epoch_list.append(epoch)
running_loss = 0.0
for batch_idx,data in enumerate(train_loader,0):
inputs,target = data
inputs,target = inputs.to(device),target.to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs,target)
loss.backward()
optimizer.step()
running_loss += loss.item()
if batch_idx % 300 == 299:
print('[%d,%5d] loss: %.3f' % (epoch+1,batch_idx+1,running_loss/300))
running_loss = 0.0
def test():
correct = 0
total = 0
with torch.no_grad():
for data in test_loader:
images,labels = data
images,labels = images.to(device),labels.to(device)
outputs = model(images)
_,predicted = torch.max(outputs.data,dim=1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy on test set:%d %%'%(100*correct/total))
acc_list.append(100*correct/total)
if __name__ == '__main__':
for epoch in range(10):
train(epoch)
test()
plt.plot(epoch_list,acc_list)
plt.xlabel("Epoch")
plt.ylabel("Accuracy")
plt.show()
运行结果: