MATLAB中pdetool工具求解泊松方程和Laplace方程

MATLAB中pdetool工具求解泊松方程和Laplace方程

求解步骤及主要函数:

1、问题定义

2、创建具有单个因变量的PDE模型, createpde()

3、创建几何结构并将其追加到PDE模型中,geometryFromEdges()

4、使用边界条件,pdegplot()

5、指定PDE系数

6、指定初始条件,setInitialConditions()

7、生成网格,pdemesh()

8、生成时间离散化

9、求解数值解,solvepde()

10、绘图解的图形,pdeplot()

如点热源问题:
方程如下:
在这里插入图片描述
代码如下:
clc

R1 = [3;4;-1;1;1;-1;-1;-1;1;1];
C1 = [1;0;0;0.4];

C1 = [C1;zeros(length(R1) - length(C1),1)];

gd = [R1,C1];

sf = ‘R1+C1’;

ns = char(‘R1’,‘C1’)’;

g = decsg(gd,sf,ns);

numberOfPDE = 1;
pdem = createpde(numberOfPDE);

geometryFromEdges(pdem,g);
figure
pdegplot(pdem,‘edgeLabels’,‘on’,‘subdomainLabels’,‘on’)

axis([-1.1 1.1 -1.1 1.1]);
axis equal

title ‘Geometry With Edge and Subdomain Labels’

applyBoundaryCondition(pdem,‘Edge’,(1:4),‘u’,0);
specifyCoefficients(pdem,‘m’,0, ‘d’,1, ‘c’,1, ‘a’,0,‘f’,1);

setInitialConditions(pdem,0);
setInitialConditions(pdem,1,‘face’,2);
msh = generateMesh(pdem);
figure;

pdemesh(pdem);

axis equal

nframes = 20;
tlist = linspace(0,0.1,nframes);
pdem.SolverOptions.ReportStatistics =‘on’;
result = solvepde(pdem,tlist);
u1 = result.NodalSolution;

figure
umax = max(max(u1));

umin = min(min(u1));

for j = 1:nframes,

pdeplot(pdem,‘xydata’,u1(:,j),‘zdata’,u1(:,j));

caxis([umin umax]);

axis([-1 1 -1 1 0 1]);

Mv(j) = getframe;

end

movie(Mv,1);

你可能感兴趣的:(matlab,傅立叶分析)